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Chapter 1

SEMISIMPLE NORMAL INJECTIVE KRASNER
HYPERMODULES
Prof. Dr. Burcu NISANCI TURKMEN

Department of Mathematics, Amasya University

1. INTRODUCTION

Algebraic hyperstructures put forth a natural generalization of classical
algebraic structures, and in 1934 they were introduced by Marty (Marty,
1934:45-49) at the eighth Congress of Scandinavian mathematicians where he
generalizes the concept of group to the concept of hypergroup. A hypergroup, a
non-empty set equipped with relational hyperprocessing and reproductive
hyperprocessing. In a group, the composition of two elements is an element,
whereas in a hypergroup the composition of two elements is an element, a non-
empty set. Since then, from a theoretical point of view, many different types of
hyperstructures (hyperring, hypermodule, hypervector space,...) and applications
of pure and applied mathematics to many subjects (Corsini,1993; Corsini &
Fotea,2003; Davvaz, 2012; Davvaz & Fotea,2007; Vougiouklis,1994). There are
different hyperrings in the literature. A special case of this species is the
introduced hyperring by Krasner (Krasner,1983:307-312). Furthermore, Krasner
introduced a new class of hyperrings and hyperfields: the quotient (factor)
hyperrings and hyperfields.

The rest of this section is arranged as follows: we remind some basic
knowledge of definitions related to the hyperstructures used throughout the
article. We define semisimple normal injective Krasner hypermodules. We also
investigate some properties of such hypermodules and prove that there is
semisimple normal injective Krasner hypermodules have properties similar to
those of strongly injective modules (Tiirkmen & Nisanc1 Tiirkmen, 2021:1-7).
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2. BASIC DEFINITIONS IN THEORY OF
HYPERMODULES

We give some fundamental definitions of hyperstructures used
(Davvaz,2012; Davvaz & Fotea,2007) in this book chapter. Let X be a non-
empty set. Then, a mapping o:X X X — P*(X) is called a “binary
hyperoperation” on X, where P*(X) is the family of all non-empty subsets of X.
The couple (X,0) is called “Ahypergroupoid”. In this definition, if U and V are
non-empty subsets of X and x € X, then we define U oV = Uyeypeyuov, xo
U ={x}oU and

Uox =Uo{x}

A hypergroupoid (X,o) is called a “semihypergroup”, if for every x,y,z €

X, wehave x o (y 0o z) = (x o y) o z ; a “quasihypergroup” if for every x € X,
xoX=X=Xox

a “hypergroup” if it is semihypergroup and a quasihypergroup; a
“commutative hypergroup” if the hyperoperation o is commutative on the set of
X. A “Krasner hyperring” is an algebraic structure (R, +,.) which satisfies the
following conditions:

1. (R,+) is a commutative hypergroup,

2. therecisa 0 € R such that 0 + x = {x} for every x € R,

3. thereisaunique x’ € Rsuchthat0 € x + x' (x' is denoted by —x) for
every x € R,

4. z€x+yimpliesthaty € —x +zandx € z — y,

5. (R,.) is a semigroup which has zero as a bilaterally absorbing element,
re.x.0=0.x=0.

(133}

6. the multiplication hyperoperation “.” is distributive with respect to the
hyperoperation “+”.
By the definition, it is clearly seen that every ring is a Krasner hyperring.

For the basic example of Krasner hyperring, we refer to the reader (Davvaz,
2013).

Let (R, +,.) be a Krasner hyperring and S be a non-empty subset of R. Then
S is called a “subhyperring” of R if (s, +, .) is itself a hyperring. A subhyperring
S of a Krasner hyperring (R, +,.) is a “hyperideal” of R if

2
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r.a €S

and a.r € S for every a € S,r € R. A commutative Krasner hyperring
(R, +,.) with identity element “1” is a “Krasner hyperfield” if (R \ {0},.) is a
group. Let (M, +) be a hypergroup and (R, +,.) be a hyperring. According to
(Vougiouklis,1994) M is called a “left hypermodule over R” if there exists :
R XM — P*(M); (a,m) ~— a.m such that for every a,b € R and m, m;, m, €
M, we have:

1. a.(my + my) =a.my; +a.m,,

2. (a+b)m=(a.m)+ (b.m),

3. (a.b).m=a.(b.m).

If R is a Krasner hyperring and (M, +) is a canonical hypergroup which
satisfies the above conditions taking an external operation : R X M — M by
(rrm)—r.meM, and r.0 =0, then M is called a “left Krasner R-
hypermodule”. A left Krasner hypermodule M over R is called “unitary” if
1g.a = a forevery a € M. In terms of convenience, by “an R-hypermodule” we
mean an unitary left Krasner R-hypermodule. A non-empty subset N of an
R-hypermodule M is said an “R-subhypermodule” of M denoted by N < M if N
is an R-hypermodule itself. If N € M and N is a subhypermodule of M, N is
called a “proper subhypermodule” of M. It is easy to prove that a non-empty
subset N of an R-hypermodule M if for every x,y € N andeveryr E R,x —y C
N and r.x € N The subset Ra = {ra|r € R} < N for every element a of an
R-hypermodule N. If N < M, M is called an “extension” of N. Let M and N be
R-hypermodules. A function f: M — N that satisfies the conditions.

L. f(my +my) = f(my) + f(my),
2. fGrm) =rf(m)
for every r €R, and every m,my,m, € M, is said to be a “strong

R-homomorphism” from M into N. If N is an R-hypermodule and f: M — N is
a strong R-homomorphism, ker(f) ={m e M | f(m) = 0y }. Moreover

Im(f)={neN|[IAmeM: ne f(m)}
Let M be a hypermodule over a hyperring R and N be a subhypermodule of

M. Consider the set % ={m+ N | m € M}, then % is a hypermodule over R
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under hyperoperation is defined as +: % X % — P*(%) and -: R X %—) %

such that (m; + N)+ (my, + N)={a+ N|a€ m; + my}andr.(m+ N) =
r.m + N for every m,my,m, € M andr € R. The set% that satisfies the above

conditions is called a “quotient (factor) hypermodule” according to N
subhypermodule of M. Note that m + N = N if and only if m € M. In (Mahjoob
& Ghaffari, 2018:554-568), a non-zero R-hypermodule M is called “simple”, if
the only subhypermodules of M are {0} and M. We denote by S(M), the set of
all simple subhypermodules of an R-hypermodule M. Let M; and M, be
subhypermodules of R-hypermodule M. Then M is called “independent”, if
M; N M, = {0}. If M; and M, are independent, then M; + M, is denoted by
M, @ M,. Also, a subhypermodule N of M is called a “direct summand” of M,
if M = N@K, for some subhypermodule K of M by (Talaee,2013:5-14). Let M
be an R-hypermodule. M is called “semisimple”, if for every subhypermodule K
of M, there exists a subhypermodule N of M such that M = K@N (Mahjoob &
Ghaffari, 2018: 554-568). Let M be a hypermodule and X = {K] | jE ]} be a set
of subhypermodules of M for any index set. The hypermodule M has “the
commutative property for sums (CPS) on X if for every subset [ of ], if
Yier Ki = Yqco Ko where 6 is a permutation of [. If M is a Krasner
R-hypermodule then M satisfies the condition CPS on the set of its all
subhypermodules in (Hamzekolaee et al.,2021:131-145) as the sum of all small
subhypermodules of M, ie. Rad(M) =Y;«mL. If M has no small
subhypermodules of M, then Rad(M) = M.

Let M be a hypermodule. In (Hamzekolaee et al.,2021:131-145), a proper
subhypermodule N of M is called “small” in M, denoted by N <& M, if

M+N+1L

for every proper subhypermodule L of M. For these subhypermodules U and
V of M,V is called a “supplement ” of Uin M it M =U+Vand UN V KV

i.e. the canonical mapping V —>% is a small strong epimorphism. A

subhypermodule U of M has “ample supplements” in M, if, whenever U +V =
M, V contains a supplement V' of U in M. Since every direct summand is a
supplement subhypermodule.
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3. SOME RESULTS ON SEMISIMPLE NORMAL
INJECTIVE KRASNER HYPERMODULES

In (Ameri & Shojaei, 2020), the basic features of injective modules have
been transferred to hypermodules as normal injective. An R-hypermodule M is
called “normal injective” if for every strong monomorphism g € Homg (4, B)
and every strong homomorhism f € Homg(A, M), there exists f €
Homg (B, M) such that f o g = f. In addition, the Baer criterion used in module
theory is defined by moving to hypermodules as Baerian injective in (Ameri &
Shojaei, 2020). Inspired by (Zdschinger,1974:267-287), we can easily define a
hypermodule M with properties (E) and (EE). Through the rest of this section,
we focus on the notion of semisimple normal injective hypermodules and the
unitary left Krasner R-hypermodule over a Krasner hyperring R will be studied
wherever the concept of Krasner hypermodule is written.

Definition 3.1 (a) Let M be a Krasner hypermodule. We call M “semisimple
normal injective” if whenever M +L =N with M < N, there exists a
subhypermodule L' of L such that M @ L' = N. It is easily proven that every

semisimple normal injective hypermodule is normal injective.
(b) Let M be a Krasner hypermodule. We call a hypermodule M has “the

property (E)” if M has a supplement in every extension N as a proper
generalization of normal injective hypermodules, and a hypermodule M has “the

property (EE)” if M has ample supplements in every extension N.

Recall from (Bordbar et al., 2020:1-19) that a hypermodule M is called
“Artinian” if it satisfies the descending chain condition on subhypermodules of
M for every descending chain of subhypermodules M; 2 M, 2 M3 2 - there
exists N € N such that M,, = My, for every natural number n > N, this is
equivalent condition with every descending chain of subhypermodules has a
minimal element.

By the Definition 3.1(b), the following lemma is obtained clearly using
(Zoschinger,1974: Lemmal.2).

Lemma 3.2 Let M be a Krasner hypermodule. Then every subhypermodule
of M has the property (E) if and only if M has the property (EE).
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Recall from (Ameri & Shojaei, 2020) that an R-hypermodule P is “normal
projective” if for every strong epimorphism g € Homg (4, B) and every strong
homomorphism f € Homg (P, B), there exists f € Homg (P, A) such that

gef=f

If fiP—M be a small strong epimorphism and P is projective

R-hypermodule, P is called a “projective cover” of M.

Definition 3.3 Let R be a Krasner hyperring. R is called “left perfect” if
every left Krasner R-hypermodule has a projective cover. If every simple
R-hypermodule is normal injective, the Krasner hyperring R is called “left
V-hyperring”.

In the next Corollary, we will characterize properties (E) and (EE) in
Krasner hypermodules in Krasner hyperrings.

Corollary 3.4 The following statements are equivalent for a Krasner
hyperring R.

1. R is left perfect.

2. Every left Krasner R-hypermodule has the property (E).

3. Every left Krasner R-hypermodule has the property (EE).

Proof. Clear by Lemma 3.2 and (Clark et al., 2006). [ ]

In the following Example, we give an example for a Krasner hypermodule
which has the property (E) but not normal injective.

Example 3.5 Let R be the Krasner hyperring % for n > 1 and the
hypermodule M = zR. Since R is an artinian hyperring, M has the property (E)

by Corollary 3.4. But M is not normal injective.

The following Theorem is an answer to the question: “Whose hypermodule
classifications of left Krasner V-hyperring?”

Theorem 3.6 Let R be a Krasner hyperring. Then the following statements

are equivalent.

1. Every Krasner R-hypermodule with the property (EE) is semisimple

normal injective.
2. Every Artinian Krasner R-hypermodule is semisimple normal injective.

3. R isaleft Krasner V-hyperring.



Lectures of Pure Mathematics on Algebra, Analysis and Geometry

Proof. (1)=(2) Clear as artinian hypermodules satisfy the property (EE).
(2)=(3) Let M be a simple Krasner R-hypermodule. By the hypothesis, M

is (semisimple) normal injective. Thus R is a Krasner left VV-hyperring.
(3)=() Let M be a hypermodule with the property (EE) and N be an
extension of M. So there exists a subhypermodule L of N such that N = M + L.
Since M has the property (EE), there exists a subhypermodule L of L such that
N=M+L and MNL KL. Thus, M NL S Rad(L") = {0}. Therefore M is
semisimple normal injective. [ ]

Now also the following property of semisimple normal injective Krasner
hypermodules which is easily proven:

Lemma 3.7 The class of semisimple normal injective Krasner
hypermodules is closed under strong isomorphism.

Proof. Let f:M — K be a strong isomorphism and K < N. Suppose that
M is a semisimple normal injective Krasner hypermodule. Consider the
following diagram in Table 1:

Table 1

AT ]
f Iy

K—— N

where 1: K — N is the inclusion mapping. Since if: M — N is a strong
monomorphism, M is a subhypermodule of N. Let N = K + L for some
subhypermodule of L< N. Then,
N=Iy(N)=Iy(K+L)=Iy(K)+Iy(L) = (y)(K) + L
= O ED) + L= HM) + L = ) (M)SL
with L' < L since M is semisimple normal injective. Therefore N = K@L'.

So K is semisimple normal injective. [ ]
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We give this result as a consequence of Lemma 3.7.

Theorem 3.8 Let M be a Krasner hypermodule. Then the following

statements are equivalent.
1. M is semisimple normal injective.

2. Every subhypermodule of M is normal injective.

Proof. (1) = (2) Let U < M and N be any extension of U. Let W = z

R
where the subhypermodule S = {(i;(w),i,(w))|lu €U} <V for these
inclusions strong homomorphisms i;: U — M and i,: U — N for the external
direct product V of M and N. Then consider strong monomorphisms f: M — W,
fm)=(m,0)+Sand g:N —- W, g(n) = (0,n) + S forevery m e M, n €
N.If (m,n) + S € W, then (m,n) + S € W, then

(mn)+S = ((m, 0) +S) + ((O,n) +S) =f(m)+gn)

SoW = Im(f) + Im(g). Since fi; = gi,, we obtain the following pushout
diagram in Table 2:

Table 2

Here, M is strong isomorphic to Im(f). By the assumption M is
semisimple normal injective by Lemma 3.7. Therefore, we have the
decomposition W = Im(f)@L for some subhypermodule L of Im(g). Now
L=gtW)=gtIm(f)®L)=U+g *(L). Let x e Un g 1(L). Then
x =0, as g is a strong monomorphism. Thus U N g~1(L) = {0}. Hence U is

normal injective.
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(2) = (1) For any extension N of M, let N=M+T for some
subhypermodule T of N. By the hypothesis, M N T is normal injective and so
there exists a subhypermodule T’ of T such that (M N T)@T' = T. We have

N=M+T=M+(MNT)+T')=M+T'
Since(MNT)NT'={0}andT' < T,thenM NT' ={0}. SoN = M®T".
Thus M is semisimple normal injective. [ ]

There exists a normal injective Krasner hypermodule which is not

semisimple normal injective:

Example 3.9 Let M = ;,Q. Then M is a normal injective Krasner
hypermodule but not semisimple normal injective.

Therefore we can give the following corollary:

Corollary 3.10 If M is a semisimple normal injective Krasner hypermodule,
then Rad(M) = {0}.

For the following proposition we refer to (Wisbauer, 1991). The proof is
included for completeness.

Proposition 3.11 Let R be a Krasner hyperring. Then the following

statements are equivalent.
1. The left R-hypermodule R is a semisimple Krasner hypermodule.
2. Every Krasner R-hypermodule is normal injective.
3. Every Krasner R-hypermodule is semisimple normal injective.
Proof. (1)&(2) It is similarly proven by (Wisbauer,1991).
(2)= (3) Let M be a Krasner R-hypermodule. By the hypothesis, every

subhypermodule of M is normal injective. By Theorem 3.8, M is semisimple

normal injective.
(3)=(2) Clear. [
By using “Theorem 3.8, we obtain the following main result:

Lemma 3.12 Let M be a simple Krasner hypermodule. M is normal injective

if and only if it is semisimple normal injective.
In the light of Lemma 3.12 we have the following corollary:

Corollary 3.13 Let R be a Krasner hyperring. Then the following statements

are equivalent.



Lectures of Pure Mathematics on Algebra, Analysis and Geometry

1. R is aleft V-hyperring.
2. Every simple Krasner R-hypermodule is semisimple normal injective.
We now prove a related result.

Theorem 3.14 The class of semisimple normal injective Krasner
hypermodules is closed under subhypermodules and factor hypermodules.

Proof. Let M be a semisimple normal injective Krasner hypermodule and
U<V <M.

It follows from Theorem 3.8 that U is normal injective. Again applying

Theorem 3.8, we have that VV is semisimple normal injective. In addition, since

every factor hypermodule % of M is a direct summand of M, any factor
hypermodule % of M is semisimple normal injective. ]

On the other hand, we have:

f
Theorem 3.15 Let 0 — M, —— M ——s M, — 0 be a short exact
sequence for Krasner hypermodules which consists of strong homomorphisms.
Then the following statements are equivalent.

1. M is semisimple normal injective.
2. M, and M, are semisimple normal injective.

Proof. Since the following exact sequences for Krasner hypermodules

f
0— M, —— M —25 M, — 0
and

Mo
Im(f)

where i is the inclusion mapping (strong monomorphism) and m is the

0 — Im(f) i M

canonical strong epimorphism. Take the hypermodule M, as a subhypermodule

of M and M, is strong isomorphic to Ml loss of generality.
1

(1) = (2) By Theorem 3.14, obvious.

(2) = (1) By using the hypothesis, we take that M; and Mﬂ are semisimple
1

S N M  T+M . M .
normal injective. For M < N, let N=M +T, ITRRTA + L L . Since 1S
1 1 1 1

10
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M

®— for some subhypermodule
My My

.. Y N
semisimple normal injective, =
1

;— < TLMl. Therefore, N = M + T' and (M N T')@U for some subhypermodule
1 1

U< T'. 1t follows that N=M+T' =M+ MnNT)OU = MOU with U <
T'. Therefore M is semisimple normal injective. [ ]

Now we close this section with the following elementary observation:

Corollary 3.17 If M = M; + M, + --- + M,,, where each M; is a semisimple

normal injective Krasner hypermodule, then M is semisimple normal injective.

Proof. The external product of Krasner hypermodules My, M,, ..., M,, say
N. By Theorem 3.16, N is semisimple normal injective. Then it follows from

Theorem 3.14 that M is semisimple normal injective. [ ]
Finally we have the following implications on subhypermodules:

Normal Injective Krasner Hypermodule=Semisimple Normal Injective
Krasner Hypermodule

4. CONCLUSION

In this chapter, semisimple normal injective left Krasner R-hypermodules is
defined on a Krasner hyperring R and the features provided by these
hypermodules are associated with the concept known as normal injective
hypermodule in literature. For this association, first of all, (E) and (EE)
properties on hypermodules and the concepts of semisimple normal injective
hypermodules were defined. Indeed, we characterize semisimple normal
injective Krasner hypermodules via strongly injective modules. Studies on
strongly injective modules can be accessed in detail from (Tiirkmen & Niganci
Tiirkmen, 2021).

Open Problem: Studying the subject of this study on commutative
hyperdomains especially Dedekind hyperdomains will ensure that it is found
indecomposable and reduced parts of semisimple normal injective

hypermodules.

11
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Chapter 2

ON QUASINORMAL SUBGROUPS
Assist. Prof. Dr. Yildiz AYDIN

Istanbul Gelisim University, Department of Management Information Systems

1. INTRODUCTION

In the theory of groups, normality of a subgroup is of paramount importance.
Such subgroups play an important role in determining the structure of a group.
For instance quotient groups are constructed through normal subgroups. For an
arbitrary group G, we call a subgroup H of G normal if every conjugate of H
with each element of G is equal to the subgroup H again. There are weaker
versions of normality of a subgroup such as quasinormality. Quasinormal
subgroups are first introduced by Ore in his paper ‘Structures and Group Theory
I’ in 1937. A subgroup H of a group G is called quasinormal if it permutes with
all subgroups of G, i.e. H is called quasinormal if KH = HK for all subgroups K
of G. Ore also showed that quasinormal subgroups are subnormal and modular.
Many studies have been done after Ores’ paper. Gross gave upper bounds for
nilpotency class and derived length of a subgroup which is core-free and
quasinormal in a p-group in ‘p-Subgroups of Core-free Quasinormal Subgroups’
and ‘p-Subgroups of Core-free Quasinormal Subgroups II’. Then Stonehewer
proved the existence of non-soluble group which is generated by two metabelian
quasinormal subgroups and also showed that a group generated by soluble
quasinormal subgroups is locally soluble in the paper named ‘Permutable
Subgroups of Some Finite p-Groups’. If we take a look to more recent works
Stonehewer reduced the studies to the class of p-groups in his paper
‘Quasinormal Subgroups of Finite p-Groups’ in 2010. Cossey and Stonehewer
studied the special case where the quasinormal subgroup is abelian in ‘Abelian
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Quasinormal Subgroups of Finite Groups’. Studies on quasinormal subgroups
are not restricted with finite groups. In 2014 Leone presented her paper
‘Quasinormal Subgroups of Infinite Groups’.

In this section we give an account of relation between quasinormal

subgroups and Frattini subgroup of a finite group.

2. PRELIMINARIES

2.1 Quasinormality

In this section, we begin with definition of quasinormal subgroups. All
groups are finite in the Chapter.

Definition 2.1.1 Let G be a group and H, K be subgroups of G. H and K are
said to be “permutable” if

HK = KH = (H,K)

If H is permutable with all subgroups of G then H is called “quasinormal”
inG. [Ore, 1937].

One can easily notice that every normal subgroup is quasinormal but the
converse does not hold in general.

Definition 2.1.2 A group G is “permutably decomposed” if G = AB, where
A and B are permutable. In this case we say that A and B are “permutably
contained” in G. [Ore, 1939].

Following three theorems are useful for one who searches normal subgroups

in a group.

Theorem 2.1.3 Let G be a group and G = AB for some subgroups A and B
of G. Then,

C={a€A| bab* € A, Vb € B}

is normal in G. [Ore, 1939].
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Theorem 2.1.4 Let G be a group and G = AB for some subgroups A and B
of G. Let By 2 B and By < A N B. Then there exists a subgroup 4, of A such
that By < Ap and Ag = G. [Ore, 1939].

Theorem 2.1.5 Let G be a group and G = AB for some subgroups A and B
of G and B be abelian. If A N B # e then for every subgroup of H of A, H is
normal in G. [Ore, 1939].

As we mentioned in Introduction quasinormal subgroups are modular too.

Now it would be appropriate to give definition of modular subgroups of a group.

Definition 2.1.6 Let G be a group and M be subgroup of G. For all H, K <
G with H < K if,

(HM)NK =(H,M NK) (2.1)

and for all H,K < G with M < K if,

(HM)NnK =(HnNK,M) (2.2)

then M is called “modular” subgroup of G. [Stonehewer, 2010].

For finite p-groups quasinormality and modularity of subgroups coincide.

The definition of modularity depends on two conditions, i. e. (2.1) and (2.2).
If we only use the first one, we can give the definition below.

Definition 2.1.7 Let G be a group and M is a subgroup of G. M is called
“semimodular” if (2.1) holds. of G. [Stonehewer, 2010].

Semimodularity may be enough for a subgroup to be quasinormal in a
special case. See the Proposition below.

Proposition 2.1.8 Let G be a finite p-group and M be a semimodular
subgroup of G. Then M is quasinormal [Stonehewer, 2010].

Similarly another definition could be done for the second condition of
modularity. It is;

Definition 2.1.9 Let G be a group and M is a subgroup of G. M is called
“weak modular” if (2.2) holds [Stonehewer, 2010].
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Of course there exists a proposition for weakly modularity too.

Proposition 2.1.10 Let G be a finite p-group and M be a weakly modular
subgroup of G. Then M is quasinormal [Stonehewer, 2010].

For a useful characterization of semimodularity we will give a proposition

but we first need to define the maps ¢ and .

Definition 2.1.11 Let G be a group and X, Y be subgroups of G. Then

bxy:[X/XNY] = [(X,Y)/Y]

by
P(4) =(4,Y)
and
Yy (XYY /Y] = [X/XnY]
by

Y(B)=XnB

Here for given subgroups A < B, the lattice of subgroups between A and B
is denoted by [A/B] [ Stonehewer, ].

Proposition 2.1.12 Let G be a group and A be a subgroup of G. Then,

(i) A is semimodular in G if and only if forall X < G

¢X,A1/)X,A = id[X/XnA]

(ii) if A is semimodular in G,

¢A,X¢A,X = id[(X,A)/Y]

Here id, is the identity map of some set A. [ Stonehewer, 2010].
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2.2 Frattini Subgroup

For futher results we recall the Frattini Subgroup of a group.

Definition 2.2.1 Let G be a group. The intersection of all maximal
subgroups is called the “Frattini Subgroup” of G and denoted by ®(G)
[Robinson, 1996]

Following theorem of Ore gives the relation between normal subgroups and
maximal subgroups in a soluble group.

Theorem 2.2.2 Let G be a soluble group and N = G. Then all maximal
subgroups containing N are conjugate. Conversely all conjugate maximal

subgroups contain the same normal subgroup N [Ore, 1937].
The theorem below presents the characterizations of finite nilpotent groups.
Theorem 2.2.3 Let G be a finite group. Then the followings are equivalent:

(i) G isnilpotent.

(i) Every subgroup of G is subnormal.

(iii) G satisfies the normalizer condition.

(iv) Every maximal subgroup of G is normal.

(v) G is the direct product of its Sylow subgroups [Robinson, 1996].

As a conclusion of previous theorem one can easily notice that every finite
p-group is nilpotent so it satisfies all the characterizations of the theorem.

Finally we give the following theorem which forms the fundamental idea of
the definition in the next section.

Theorem 2.2.4 Let G be a finite group and M be a maximal subgroup of G.
Then

(i) EitherZ(G) <MorG' <M
Gi) G'NZ(G) < d(G)
(i) Z(G) £ M = M < G [Rose, 1978].

Readers are referred to [Rose, 1978] and [Robinson, 1996] for necessary
background.
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3. ON QUASINORMAL SUBGROUPS OF FINITE p-
GROUPS

In this section we shall investigate some properties of new subgroups, first
we begin with defining them.

Definition 3.1 Let G be a group. Then @y and @, are defined as,

Dz = ﬂ M;
Z(6)sM;

and

(I)Gl = ﬂ Mi
GI<M;

where M; are maximal subgroups of G.
Here Z(G) and G’ are the centre and the commutator subgroup of G.

We know that these sets are nontrivial if Z(G) or G’ is nontrivial and of

course they are subgroups of G.

It is well known that both Z(G) and G’ are normal in any group G. But when
it comes to the normality (or quasinormality) of @) and ®¢, , G must have

some special conditions.
A strike corollary follows from the definition.
Corollary 3.2 Let G be a finite group. Then @) N P = D(G)
Next lemma is crucial forte subgroups above to be normal (quasinormal).

Lemma 3.3 Let G be a soluble group and M be a maximal subgroup of G.
If M contains both Z(G) and G’ then all maximal subgroups contain both Z(G)

and G'. Otherwise the class of maximal subgroups of G is union of two disjoint
subset.

Proof. If G is abelian then G’ = 1 and Z(G) = G, so the proof is done. Then

assume G is not abelian. Since G is finite then all maximal subgroups of G
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contains either Z(G) or G' by Theorem 2.2.4. Denote the class of maximal

subgroups of G by
Cl(G,<) ={M <GIM < G}
and let
Clzi)(G,<) ={M € Cl(G,<)| Z(G) < M}
Cl; (G, <) ={M € Cl(G,<)| G' <M}
here M < G means that M is a maximal subgroup of G.

Obviously Clz)(G, <) and Clg, (G, <) are subsets of CI(G, <). And again
by Theorem 2.2.4

Clzi)(G, <) U Cly (G, <) = Cl(G, <)
For the first part of the lemma let M contains both Z(G) and G'. Then
M € Cly)(G,<)
and M € Cl;(G, <). Since Z(G) and G’ are normal subgroups then each
M* € Clz5)(G,<)

must contain G’ by Theorem 2.2.2. Similarly each M, € Cl;,(G, <) must
contain Z(G). So both Clz)(G,<) and Clg, (G, <) consist of maximal
subgroups which contain both Z(G) and G'. Then

Clz(G)(G, <) = ClG,(G, <) = CZ(G, <)

For the second part of the lemma let M € Cl;,(G, <) and M & Clz (G, <).
Since G is not abelian then Clz)(G, <) # @ and let M* € Clz)(G, <). If M*
contains Z(G) then M and M* would be conjugate and they would contain the
same normal subgroups by Theorem 2.2.2. It means that M € Clz (G, <)

Which is a contradiction. So

Clzi)(G,<)NCly(G,<)=0
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For any finite group @, is normal (and quasinormal) in G by Theorem 2.2.4

(iii). But for @y we have to restrict finite groups to finite p-groups. Obviously

if G is a finite p-group, then G is nilpotent and every maximal subgroup of G is

normal, s0 @y is normal (and quasinormal ) in G.

For simplicity we enumerate the conditions in Lemma 3.3 by (1) and (2),
where

(1) ClZ(G)(GJ <) = ClGI(G' <)
2) Clzi)(G,<)NCly(G,<) =0

It is easy to see that for finite p-groups there is no other condition except

these conditions by Lemma 3.3. [ ]

Theorem 3.4 Let G be a finite p-group. Then @y 4)is a unique minimal

(normal) subgroup of G.

Proof. Since G is finite p-group @4y is normal (and quasinormal) in G by

the explanations above.

Now consider the maps ¢ and Y defined in Definition 2.1.11. Assume for

every X < G
XNPzp<H<X

then (l)(H) = (H, q)Z(G)) and for Cbz(g) < (H, (I)Z(G)> < (X, qu(c))

Y((H, Dy6)) = (H, Dy6)) N X.

Since @) is quasinormal then it is modular (and semimodular) by
[Ore, 1937]. So,

l/)((H, cI)Z(G)>) = (H, q)z(a)) NX=H

by Proposition 2.1.12 (i). Therefore H = (H, ®z(5,) because H < X. This
implies that @) < H. Finally @ is a unique minimal normal subgroup since

H and X are arbitrary subgroups of G. [ ]

Corollary 3.5 Let G be a finite p-group. Then @) = @, = O(G).
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Proof. The same way to prove Theorem 3.4 could be done for &+ and since
they are unique then ®z5) = ®;r. Also we have @y gy N Py = O(G) by
Corollary 3.2. So @y = @, = P(G).

One may say that the previous corollary implies that only condition (1) holds
for G. But we have to keep in mind that in condition (2) the intersection of

maximals in both Clz(4)(G, <) and Clg, (G, <) could be the same subgroup too.

We finish this section with applications of @y and @+ to Theorem 2.1.3,
Theorem 2.1.4, Theorem 2.1.5. [ |

Corollary 3.6 Let G be a group. Then,
€ ={a€dye| bab™ € Py, Vb E Dr}
is normal in (® gy, Pgr).
Proof. It is clear by Theorem 2.1.3 since @ is normal in (@) , D). ®

Corollary 3.7 Let G be a group, B 2 @, and B < ®(G). Then for some
B < A, Aisnormal in (@), D).

Proof. Clear by Theorem 2.1.4. ]

Corollary 3.8 Let G be a group, @, be abelian and ®(G) # 1. Then for
some H < @z, H is normal in (@6, Pyr).

Proof. Directly seen by Theorem 2.1.5. ]

4. CONCLUSION

The minimality of @) and @+ given in Theorem 3.4 could be combined
with last three corollaries above. Readers may investigate more about the
structure of @y and @ . These subgroups are located between ®(G) and G.
So there are at least two different normal series of G. Readers also may search

those series. It seems there are a lot of fields to study on @y and ®r.
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1. INTRODUCTION

SS-supplemented modules which are studied in (Kaynar et al., 2020) as a
strongly notion of an important class of supplemented modules. Supplemented
modules have been extensively studied in recent years. Important features and
characterizations of module theory can be found of (Clark et al., 2006),
(Mohamed & Miiller, 1990); Wisbauer, 1991). Meanwhile, none as the
researchers so far have taken an ss-supplemented hyperstructural approach,
while only it has been studied as a concept that has entered the literature in
module theory. We will introduce this concept with the help of hypermodule,
taking inspiration from ss-supplemented modules and studies on basic topics.
Let M be a module. M is called “ss-supplemented” if every submodule N of M
has a supplement K in M such that N N K is semisimple in (Kaynar et al., 2020).
As we know from definitions, a hypermodule may not contain an element like
0. Morever, the intersection of each two subhypermodules of an R- hypermodule
is not a subhypermodule of that hypermodule, in general, So, we will work with
Krasner hypermodule on Krasner hyperring, not working with the hypermodules
on any hyperring. We refer the researchers for more details about hyperstructures
theory to (Ameri&Shojaei,2020; Corsini,1994; Corsini& Leoreanu,2003;
Davvaz,2012; Davvaz,2007; Hamzekolace et al.,2021; Marty,1934; Talace,
2013)
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The remaining sections inside will be as follows, in section 2, basic
definition and properties that will be read related to hyperstructures will be
given, in section 3, the concept strongly local hypermodules and ss-
supplemented hypermodules will be characterized by the help of hyperring by
giving algebraic propertied by these concepts.

2. BASIC DEFINITIONS

Let H be a non-empty set and mapping o: H X H — P*(H) where P*(H) is
the set of every non-empty subset of H. Then the mapping "o " is called a
“hyperoperation” on H and the algebraic hyperstructures is based on this
hyperoperation. Theory of hyperstructures was first introduced by Marty in
(Mahjoob & Ghaffari, 2018). Many important developments have been
presented by this concept and interest in this theory have been rised by algebraist
till now. To prove this assertion, we refer readers (Corsini & Leoreanu, 2003;
Hamzekolaee et al., 2021; Marty, 1934; Talaee, 2013), Talaee introduced and
studied classical algebraic properties of small subhypermodules in
hypermodules in the same way as the concept as in module theory. We specialize
here this study to a more special contex.

In what follows, we give some basic definitions about hypergroups,
hyperring and hypermodule which we need in this paper.

Let “o” be a hyperoperation on H. Then (H,°) is called a “hypergroupoid”.

It is defined sets
XoY = UXEX xXoy

yey

and X o{a} =xcafora € HandX,Y € P*(H). A hypergroupoid (H,°) is
called a “semihypergroup” if for every a,b,c € H, we have (aebh)oc=avo

(b o c¢). A semihypergroup (H,°) is called a “hypergroup” if
aocH=Hoa=H
for every a € H. A non-empty subset F of a hypergroup (H,°) is called a

“subhypergroup” if
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f of =Fo f =F
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for every f € F. A hypergroup H is called “commutative” if the

6 9

hyperoperation “o” is commutative on the set of H. A commutative hypergroup

(H,0) is called “canonical”, if the following three condition satisfies.

1. There exists a unique of H such that a o 0 = {a} for every a € H.

2. There exists a unique a”* € H such thata € a o a™! forevery a € H.

3. fa€boc,thenb€aoctandc € b~ oa foreverya,b,c € H
(Davvaz, 2007).

The triple (R,W,°) is a hyperring, if (R,W) is a hypergroup, (R,°) is a
“semihypergroup” and “o” is distributive over “W” (Davvaz, 2007). A hyperring
(RW,0) is called Krasner, if (R,W) is a canonical hypergroup and (R,0) is a
semigroup such that 0 is a zero element, i.e. x © 0 =0 = 0 o x for every x € R
(Davvaz, 2007). Let (R,J,0) be a hyperring, (M,+) a hypergroup and
:R X H — f*(EK2) an external hyperoperation (H,+,.) is called a “left
R-hypermodule” if it satisfies following statements for every 1,75, € R, hq, h, € H

1. 71(hy+hy) = (1. hy) + (2. hy);
2. (nU¥ry).hy = (hy) + (hy)
3. (rlrz). h1 =n. (Slhl) (DaVVaZ, 2007)

In similar way, as right hypermodule over R can be defined. If (H, +) is a
canonical hypergroup and (R,4,.) is a Krasner hyperring, then H is called
“canonical R-hypermodule” where “” is an external operation, that is
.:RXH—H by (r,b) = r.b and r.0 = 0. A non-empty subset F of on
(Krasner) R-hypermodule H is called a “subhypermodule”, denoted by F < H,
if F itself is a (Krasner) hypermodule over R with hyperoperation defined on
R X H. Let M be a Krasner R-hypermodule. A subhypermodule F is “small” in
H (denoted by F << H), if F+L=H implies L =H, where L <H.
Equivalently, if L is a proper subhypermodule of H, then F + L # H (Wisbauer,
1991). Let H be a Krasner hypermodule. H is called “hollow” if every proper
subhypermodule of H is small in H and H is called “local” if H has a proper
subhypermodule that contains all proper subhypermodules of H (Hamzekolaee
et al., 2021). It is clear that every local hypermodule is hollow. Let H be a

hypermodule over a hyperring. R and F < H. Consider set H/F =
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{h+ F|h € H}. Then H/F is a hypermodule over R under hyperoperation
defined by +: H/F xH/F — P*(H/F) and external composition .:R X
H/F — H/F such that

h1+F+h2+F={x+F|th1+h2}

and r.(h+ F) =rh+F for every h,hy,h, € H and r € R. Let H be a

hypermodule, J on indexed set and
x={FljeJ}

be a set of subhypermodules of H. It is called that H satisfies “CPS
(commutative property for sums) on y” if for every subset K of J. We have
Ykek Fx = Xyer F,, where I' is a permutation of K. A Krasner R- hypermodule
always satisfies CPS on the set of its all subhypermodules. Let H be a Krasner
R-hypermodule such that H satisfies CPS on the set of its all small
subhypermodules. The sum of all small subhypermodule of H defined by

Rad(H) = Z F
F<KH

If H has no small subhypermodule, Rad(H) = H is assumed. Let H be a
Krasner R- hypermodule. Then H is local if and only if it is local and Rad(H) #
H (Hamzekolaee et al., 2021). Let (Hy,+4,.1) and (Hy, +,,.,) be Krasner
hypermodules over R. A mapping f:H; — H, 1is called a “strong
homomorphism”, if f(x +1y) = f(x) +, f(y) and f(r.4 x) = r ., x for every
x,y € H; and r € R (Hamzekolaee et al., 2021). Let f: H; — H, be a strong
homomorphism of Krasner hypermodules. The set of Kerf =
{x € H1| fx) = OHz} is a subhypermodule of H; (Hamzekolaee et al., 2021).
Let H be a Krasner R-hypermodule. A subhypermodule H is called a “direct
summand” of H, if there exists a subhypermodule F of H such that F N H = {0}
and F + L = H (Talaee, 2013). A non-zero R-hypermodule H is called simple,
if the only subhypermodules of H are {0y} and H by (Mahjoob & Ghaffari,
2018). The set of all simple subhypermodules of an R-hypermodule H is denoted
by S(M). Let H be on R-hypermodule. Then H is called “semisimple” if for every
subhypermodule F of H, there is a subhypermodule K of H such that H = F @
K in (Mahjoob & Ghaffari, 2018). Let H be an R-hypermodule. H is called
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supplemented if for every subhypermodule F of H has a supplement in H, i.e.
there exists a subhypermodule L of H suchthat H=F+Land FNL KL
(Hamzekolaee et al., 2021). Let H be an R-hypermodule and F be a
subhypermodule of H. If for every subhypermodule L of H such that H = F +
L, there exists a supplement L' of F with L' < L, then we say F has “ample
supplements” in H. If every subhypermodule of H has ample supplements in H,

then H is called an “amply supplemented hypermodule” (Hamzekolaee et al.,
2021).

3. STRONGLY LOCAL KRASNER HYPERMODULES

In this part, we define the notion of strongly local hypermodules and provide
various properties of these hypermodules.

We call a Krasner hypermodule H “strongly local” if it is local and Rad (H)
is semisimple. The concept of strongly local hypermodule is a generalization of
concept of simple hypermodules, but it is a specialized by the concept of local
hypermodules. By Soc(H), we denote by sum of all semisimple subhypermodule
of H. Using by the radical of hypermodule H, i.e. Rad(H), we specialized
Soc(H) to Socs(H). We define a subhypermodule Socg(H) as
Y{F < L|F issimple}. We clearly seen that Socg(H) S Soc(H) and
Socs(H) € Rad(H).

Let’s start the section with the lemmas that we will use frequently.

Lemma 3.1 Let H be a Krasner hypermodule and F be a semisimple
subhypermodule in Rad(H). Then F << H.

Proof. Consider the subhypermodule L of H such that H = F + L. By the
hypothesis, there exists a subhypermodule F’ of F suchthat F = (FNL) @ F'.
Thus H=F+L=[(FNL)Y®F'|+L=F"+L. Since FFNL=(F'NnF)n
L=F n(FNL)={0y}by Lemma 2.11 of (Talaee, 2013), then H = F' @ L.
It follows from Rad(F") € Rad(F) = 0 that Rad(H) = Rad(L). SoH = F +
LS Rad(H)+ LS L. ThusF < H. [

Lemma 3.2 Let H be a Krasner hypermodule. Then Socs(H) = Rad(H) N
Soc(H).
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Proof. It is clear that Socs(H) S Rad(H) N Soc(H), for the converse

inclusion, we take
x € Rad(H) N Soc(H)

Then there exist m € N* and simple subhypermodules F; of H (1 < j < m)
such that H is direct sums of every F;. Since Rx < H, F; K H for all j. There
are x € Rx € Socs(H). [ |

Lemma 3.3 Let H be a Krasner hypermodule and F, L be subhypermodules

of H. Then the following statements are equivalent.

1. H=F+Land FNL S Socg(L),
2. H=F+ L, FNL S Rad(L) and F N L is semisimple,
3. H=F+L,F+ L < LandF N L is semisimple.

Proof. (1) = (2) It follows from F N L S Soc(L) N Rad(L) that FNL S
Rad(L) and F N L is semisimple.

(2) = (3) Clear by Lemma 3.1.
(3) = (1) Clear by Lemma 3.2. [ ]

We say a non-zero Krasner hypermodule H “indecomposable” if the only

direct summands of H are {0y} and H.

Lemma 3.4 Let H be a Krasner hypermodule, Then, H is simple or
Soc(H) € Rad(H).

Proof. Suppose that H is not simple. Let H = Soc(H) + L for some
subhypermodule L of H. Since Soc(H) is semisimple, there exists a
subhypermodule F of Soc(H) such that Soc(H) = (Soc(H) N L) @ F. Thus,

H=Soc(H)+L=[Soc(H)NLDF|+L=LDF

Since F is indecomposable but not simple, then F = H. Since Soc(H) < H,
Soc(H) € Rad(H). [ |

Corollary 3.5 Let H be a local Krasner hypermodule which is not simple.
Then Socs(H) = Soc(H).
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We call a Krasner hypermodule H “radical” if Rad(H) = H. We denote by
P(H), the sum of all radical subhypermodules of H. Here P(H) is the largest
radical subhypermodule of H. If P(H) = 0, H is called “reduced”.

Let us give a proposition to help classify strongly local Krasner hyperring.

Proposition 3.6 Let H be a strongly local Krasner hypermodule. Then H is
reduced.

Proof. By the hypothesis, P(H) S Rad(H) S Soc(H). So P(H) is
semisimple. Therefore

P(H) = Rad(P(H)) =0

In the following proposition the main feature of strongly local Krasner
hypermodule. [ ]

Proposition 3.7 Every factor hypermodule of a strongly local Krasner
hypermodule is strongly local.

Proof. Let H be a strongly local Krasner hypermodule and F be a
subhypermodule of H. We have H/F is a local hypermodule. Consider the
strongly epimorphism p: H — H/F. Since

Rad(H/F) = Rad(H)/F < p(Soc(H)) < Soc(H/F)
H/F is strongly local. u

4. SS-SUPPLEMENTED KRASNER HYPERMODULES

In this part, we define notion of ss-supplemented Krasner hypermodules and
we study this notion comparatively with the notion of strongly local
hypermodules.

Let H be a Krasner R-hypermodule H is called “ss-suplemented” if every
subhypermodule F of H has a supplement L of H such that F N L is semisimple.
Let H be a Krasner R-hypermodule and F be a subhypermodule of H. If for every
subhypermodule L of H such that H = F + L, there exists a ss-supplement L' of
F with L' < L, then we call F has “ample ss-supplements” in H. If every
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subhypermodule of H has ample ss-supplements in H, then H is called an “ample
ss-supplemented” hypermodule.

The relationship of strongly local hypermodule with maximal
subhypermodules is given in the next proposition.

Proposition 4.1 Let H be a Krasner hypermodule and F be a maximal
subhypermodule of H. A subhypermodule L of H is an ss-supplement of F in H
ifand only if H = F + L and L is strongly local.

Proof. (=) Let L be an ss-supplement of F in H. Since F N L is semisimple,
then L is local, F N L = Rad(L) is the unique maximal subhypermodule of L
and Rad (L) € Soc(L). So, L is strongly local.

(&) Since L is local and H = F + L, we have F N L S Rad(L). By the
hypothesis, F N L is semisimple. Thus, L is an ss-supplement of F in H. [

Lemma 4.2 Let H be an ss-supplemented Krasner hypermodule and F «
H.Then F S Socs(H).

Proof. By the hypothesis, H is the unique ss-supplement of F in H.
Therefore F N H = F is semisimple. By using Lemma 3.2, F € Socg(H). [ ]

Corollary 4.3 Let H be an ss-supplemented Krasner hypermodule and
Rad(H) < H. Then Rad(H) < Soc(H)

Proposition 4.4 Every strongly local Krasner hypermodule is amply ss-
supplemented.

Proof. Let H be a strongly local Krasner hypermodule. Then H is local. So,
H is amply supplemented. Since H has no supplement subhypermodule not
including {04} and H. It follows from Rad(H) S Soc(H) that H is amply ss-
supplemented. [ ]

Proposition 4.5 Let H be a hollow Krasner hypermodule. Then H is (amply)
ss-supplemented if and only if it is strongly local.

Proof. (<) Clear by Proposition 4.4
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(=) Suppose that H is ss-supplemented. Let x € Rad(H). Then Rx < H.
So, by Lemma 4.2, Rx € Socs(H).

We have x € Soc(H) and Rad(H) < Soc(H). Suppose that H is radical.
Then we have H = Soc(H) and Rad(H) = 0 = H. This contradicts that H is
hollow. Therefore H # Rad(H) and so H is strongly local. |

Example 4.6 Consider the Z-hypermodule H = Z, for the hyperring of

integer Z and any prime integer p. Since hypermodule H is hollow, H is amply
supplemented, but not amply ss-supplemented by Proposition 4.5.

Let us show under what conditions the ss-supplemented Krasner
hypermodule with supplemented hypermodules will equivalent conditions.

Lemma 4.7 Let H be a supplemented Krasner hypermodule and Rad(H) S
Soc(H). Then H is ss-supplemented.

Proof. Let F be a subhypermodule of H. By the hypothesis, there exist a
subhypermodule L of H such that

H=F+L

and FNL KL Then FNLESRad(L) € Rad(H). Since Rad(H) S
Soc(H), then F N L is semisimple. Therefore, L is a ss-supplement of the

subhypermodule F in H. So, H is ss-supplemented. [ ]

Theorem 4.8 Let H be a Krasner hypermodule with small radical. Then the

following statements are equivalent.

1. H is ss-supplemented
2. H is supplemented and Rad(H) has an ss-supplement in H.
3. H is supplemented and Rad(H) S Soc(H)

Proof. (1)=(2) Clear
(2)=(3) By Lemma 4.2

(3)=(1) Follows from Lemma 4.7 [ |
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Lemma 4.9 Let H be a Krasner hypermodule and F, L be subhypermodules
of H with F ss-supplemented. If F + L has an ss-supplement in H, L also has an

ss-supplement in H.

Proof. Let H be an ss-supplement of F + L in H and V is an ss-supplement
of U+L)NFinF.Thenwehave H= U+V +Land U+V)NLKU+V
by Corollary 2.5 of (Talaee, 2013). In addition, U N (V + L) is a semisimple
subhypermodule of H. Since VN [(U+ L) NF] =V N (U + L) is semisimple,
(U + V) n L is semisimple. Hence U + V is an ss-supplement of L in H. [ ]

Proposition 4.10 Let F, L be any subhypermodules of a Krasner
hypermodule H with H = F + L. Then if F and L are ss-supplemented, H is ss-
supplemented.

Proof. Let T be any subhypermodule of H. {0} is a ss-supplement of H =
F+L+Tin H. Since F is ss-supplement, L + T has an ss-supplement in H by
Lemma 4.9, Again applying Lemma 4.9, we also obtain that T has an ss-

supplement in H. So, H is ss-supplemented. [ ]

We have seen that the amply ss-supplemented Krasner hypermodule feature
is completely inherited in factor hypermodules.

Proposition 4.11 If H is a (amply) ss-supplemented Krasner hypermodule,

then every factor hypermodule of H is (amply) ss-supplemented.

Proof. Let H be an ss-supplemented Krasner hypermodule and H/F' be a
factor hypermodule of H. By hypothesis, there exists a subhypermodule F of H
with contains F’ such that H = F + L, F N L < L and F N L is semisimple. Let
p:H — H/F' be a strong epimorphism. Then we have H/F' =F/F' +
(L+F")/F" and

F/FFn(L+F)/F =(FnL)+F)/F =p(FnL) <p(L)
=(L+F")/F'

by Proposition 2.6 of (Talaece, 2013). Since FNL is semisimple,
p(FNL)=F/F' ' n(L+F")/F" is semisimple. Thus, (L+ F')/F' is an ss-
supplement of F/F' in H/F'. It can be similarly proven that if H is amply ss-

supplemented, then so is every factor hypermodule of H. [ ]
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Theorem 4.12 Let H = @ ¢ H;j, where H; is a strongly local Krasner
hypermodule. Then H is ss-supplemented.

Proof. Since every strongly local hypermodule is local, Rad(H;) S
Soc(H;) for every j € J. So

Rad(H) = ®jc;Rad(H;) € ®jc;Soc(H;) = Soc(H)

By Lemma 3.1, Rad(H) < H. It follows from Theorem 4.8 that H is ss-
supplemented.

Recall that a Krasner hypermodule F is called “H-generated” for a Krasner
hypermodule H if there exists a strongly epimorphism a: H) — F for some
index set J. u

Corollary 4.13 Let H be a strongly local Krasner hypermodule. Then every

H-generated hypermodule is ss-supplemented.

Proof. Suppose that F is H-generated. Then there exists a strong
epimorphism a: FU) — H for some index set J. By Theorem 4.12, FU) is ss-
supplemented. Therefore, H is ss-supplemented by Proposition 4.11. [ ]

Proposition 4.14 Let H be a Krasner hypermodule. If every

subhypermodule of H is ss-supplemented, then H is amply ss-supplemented.

Proof. Let F and L be subhypermodules of H such that H = F + L. Since L
is ss-supplemented, there exists a subhypermodule L' of L such that L =
(FNL)+L,FnL « L and F N L' is semisimple. Then we have

H=F+L=F+(FNnL)+L)=F+L

So, F has ample ss-supplements in H. Therefore, H is amply ss-

supplemented. [ ]

The relationship between ss-supplemented subhypermodules and amply ss-
supplemented Krasner hypermodules will be presented in the following lemma.

Lemma 4.15 Let H be amply ss-supplemented Krasner hypermodule and L

be an ss-supplement subhypermodule in H. Then L is amply ss-supplemented.
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Proof. Let L be an ss-supplement of a subhypermodule F of H. Let U and V
be subhypermodules of L such that L = U + V. Then H = (F + U) + V. Since
H is amply ss-supplemented, F + U has an ss-supplement V' €V in H. It
follows fromU + V' < LthatL=U+ V' SoL =U + V'. Moreover U N V' «

V', as
UnV' c(F+U)nV' KV’

Since (F +U) NV’ is semisimple, U N V' is semisimple. So V' is an ss-

supplement of U in L. Therefore, L is amply ss-supplemented. [ ]

Theorem 4.16 Let H be a Krasner hypermodule. Then H is amply ss-
supplemented if and only if every subhypermodule F of H is of the form F =
U + V, where U is ss-supplemented and V S Socg(F).

Proof. (=) Let F be a subhypermodule of H. Since H is ss-supplemented,
F has an ss-supplement T in H. Say V = F N T. Since T is an ss-supplement of
F in H, we obtain that V € Socs(T) S Socs(F). Applying Lemma 2.11 of
(Talaee, 2013), wehave F=FNF=FNU+T)=U+FNT=U+V.By

Lemma 4.15, U is ss-supplemented.

(&) Let F be a subhypermodule of H. By the hypothesis, there exist
subhypermodules U and V of H such that F = U + V, U is ss-supplemented and
V' € Socg(F). By Proposition 4.10, F is ss-supplemented. Hence F is amply ss-
supplemented by Proposition 4.14. [ |

Corollary 4.17 The following statements are equivalent for a Krasner

hypermodule H.

1. H is amply ss-supplemented,
2. Every subhypermodule of H is ss-supplemented,
3. Every subhypermodule of H is amply ss-supplemented.

We call a Krasner hypermodule H “normal m-projective” if whenever F and
L subhypermodules of H such that H =F + L, there exists a strong
endomorphism a of H such that a(H) < F and (1 — a)(H) < V. Using the
definition normal projective hypermodule in (Ameri & Shojaei, 2020), it is

obtained that every normal projective module is normal m-projective.

36



Lectures of Pure Mathematics on Algebra, Analysis and Geometry

We will show that the concepts of ss-supplemented Krasner hypermodules
and amply ss-supplemented Krasner hypermodules have the same structure

thanks to notion of normal Tt-projectively.

Proposition 4.18 Let H be a normal m-projective ss-supplemented Krasner

hypermodule. Then H is amply ss-supplemented.

Proof. Let F and L be subhypermodules of H such that H = F + L. By the
hypothesis, there exists a strong endomorphism « of H such that a(H) < F and
(1 —a)(H) < L. Note that (1 — a)(F) < F. Let L' be an ss-supplement of F in
H. Then H=aH)+(Q1-a)H)=aH)+(1-a)(F+L)<F+(1-
a)(L'), sothat H=F + (1 — a)(L'). Note that (1 —a)(L') < L.Letx € F N
(1 —a)(L"). Then, x € F and

x=0-a)a)=a—a(a)

for some a € L. It follows from a = x + a(a) € F that x € (1 —a)(F N
L').Since FNL KL

FN(l-ao))=0QA-a)Fnl)<xA-a))

by Proposition 2.6 of (Talaee, 2013). Since FN(1—a)(L') =1 —
a)(F n L") is semisimple, (1 — a)(L") is an ss-supplement of F in H. Thus, H

is amply ss- supplement. ]

Corollary 4.19 Any subhypermodule of a normal projective ss-
supplemented Krasner hypermodule is ss-supplemented.

Proposition 4.20 Let H be a normal projective hypermodule. Then H is ss-
supplemented if and only if it is supplemented and Rad(H) € Soc(H).

Proof. Since every normal projective hypermodule has small radical, the

proof follows from Theorem 4.8. ]

5. CONCLUSION

The aim of this book chapter is to reveal the existence of the concept of ss-

supplemented Krasner hypermodule over a Krasner hyperring R. In our study,
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firstly the concept of strong local Krasner hypermodule, which has an important
place in the definition of ss-supplemented Krasner hypermodules, was
introduced as a strong notion of supplemented Krasner hypermodule. The
concepts of ss-supplemented Krasner hypermodules and amply ss-supplemented
Krasner hypermodules were introduced. Every strongly local Krasner
hypermodule is proved to be an ss-supplemented Krasner hypermodule. An
example of a module that is amply supplenmented but not amply ss-
supplemented Krasner hypermodule is given. It has been shown that -projective
ss-supplemented Krasner hypermodules are ss-supplemented Krasner
hypermodules. Our results specialized some known results on (Hamzekolaee et
al., 2021) and generalize of the notion of ss-supplemented modules in (Kaynar
et al., 2020).
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Chapter 4

COMPACT EMBEDDING AND INCLUSION
THEOREMS FOR WEIGHTED FUNCTION SPACES
WITH WAVELET TRANSFORM
Assoc. Prof. Dr. Oznur KULAK

Department of Mathematics, Amasya University

1. INTRODUCTION

Wavelet theory is very popular topic and an alternative to time-frequency
analysis. Many researchers study on wavelet theory (Daubechies, 1992;
Grochenig, 2001; Mallat, 1998). The parameters in wavelet theory are “fime” x

d
and “scale” s. “Dilation operator” Dy is given by Dsf(t) = |s| 2f G) for all

t € R%, 0 # s € R. It preserves the shape of f: R4 - C, but it changes the scale.

“The continuous wavelet transform” of a function f with respect to wavelet g is
defined by

WofGes) = 15172 [ r09 () a
R4

for x € R% and 0 # s € R (Grochenig, 2001). The Wavelet transform is
written as convolution W, f(x, s) = f * Dsg*(x), where g*(t) = g(—t). Also it
is known that Wy (T,f) = T, )W, f (Kulak & Giirkanli, 2011). For

91,92 € L*(R%),
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s < o

j’” j9:G)gGo)|

S
0
and

jo 91(5w) gz (sw)

S ds = K (independent of w)

0

is called the “wavelet admissibility condition” (Daubechies, 1992;
Grochenig, 2001). If g4, g, € LZ(]Rd) satisfy the admissibility condition, then

dxds
j j 2GS, Fa ) gy = Kfu fo)

for all f;, f, € L*(R®) (Daubechies, 1992; Gréchenig, 2001). If

91,92 € L? (]Rd) satisfy admissibility condition, then f € LZ(]Rd) is

reconstructed from it’s the wavelet transform by

1 *© dxds
= EJR.: JO Wy, f(x, )T Ds g, prrEy

(Daubechies, 1992; Grochenig, 2001). In this paper the “weight function ©”
is positive real valued, measurable and locally bounded on R which satisfies
wx)=1Lox+y) <oxwly)

for all x,y € R® (Reiter, 1968). A weight w(x) = (1 + |x|)¢ is called
“weight of polynomial type” such that x € R% and a > 0. If the weights w; and
w, satisfy the condition w;(x) < Cw,(x), (C > 0) for all x € R%, we denote
with this symbol w; < w,. Also if the weight functions w; and w, are

equivalent, we write that w; = w, if and only if w; < w, and w, < w;.

The function

10) = w({x € R: [F)] > ) = j () dx
{xERd:If(x)|>y}
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is said that “distribution function”, (Blozinski, 1972; Hunt, 1966; Hunt &
Kurtz, 1983). The “rearangement function” is given by

fr ) = inf{y > 0:2:(y) < t} = sup{y > 0:2:(y) > t}

for t = 0 (Blozinski, 1972; Hunt, 1966; Hunt & Kurtz, 1983). Also, the

“average function” is defined by
t
*% 1 *
fro=¢ [ e
0

for t > 0 (Blozinski, 1972; Hunt, 1966; Hunt & Kurtz, 1983). The
“weighted Lorentz space L(p,q, wdu) (]Rd)” is a vector space of measurable

functions f on R¥ such that ||f lpg,0 < oo, where

1

(o] g—1 * q .
Ifllpq0 = (%fo tr (f (t))th)q, if 0<p,q<oo

1
Ifllpgw = sup tPf*(t),if 0<p<q=oo.
>

This space is a normed space with the following norm by (Blozinski, 1972;
Hunt, 1966; Hunt & Kurtz, 1983; Duyar & Giirkanli, 2003)

1
© g_l *k E :
Wllpq = (L0707 (£ @) at )" it 0 < p.g < oo

1
”f”pq,w = Stug) tpf*(t), if 0< p<q=oo,
>

2. THE SPACE L,(W)L%, (R?)
In this chapter, we assume that the scales of wavelet transform is fixed. The

space L, (W)24" (]Rd) is the vector space of functions f € Lﬁjl (Rd) such that

wq,Wy

their wavelet transforms W, f in L(q,7r, w,du) (]Rd).
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Definition 2.1 Let 1 < p,q,7 < o and w;, w, be weight functions on R¥.
Assume that 0 =g €S (]Rd) which denotes space of complex-valued

continuous functions on R¢ rapidly decreasing at infinity. For s € R, we set

L W)LTL (RY) = {f € L, (RY): W, f € L(q,7, wpdp)(R)}.

w1q,Wy

The space Lg(W Z’i’;z (]Rd) is a normed Banach space with this norm

Il par = 1fllpw, + [Wof|

qr,w3

Theorem 2.2 a) The space C¢° (]Rd) which denotes space of infinitely
differentiable complex-valued functions with compact supported on R¢, is dense

in L{(WHLTE (R?).

w1,W7

b) Assume that w, is weight function of polynomial type. Then
L, (w)Pa" (]Rd) is dense in Lﬁ)l(Rd).

wq,Wy

Proof. a) For arbitrary h € C° (]Rd), we have h € Lz)l (]Rd). It's known that

L(q, r,wzdu)(Rd) is a Banach module over Llw2 (]Rd) (Duyar & Giirkanli,
2003). Then

IWyhl,, . = 105 Dsgllgrao, < WAllgra, 1Dsg" 1o, < o0

and WghEL(q,r,a)zdu)(]Rd) is written. So we have hE
L(q,7, w,du)(R?). That means C°(R?) ¢ Ly(W)577 (R?). Now let be h €

wq,w

L w)5o0 (R%). So h € LY, (R?) and Wyh € L(q, 7, w,dp)(R?). Also since

w1,W3
cr (Rd) is dense in these spaces, there exist (M) nen, (f)nen € CCO"(]Rd) such
that

lhy — h”p,ou1 -0, ”fn - Wgh” - 0.

qr,wz

By using the subsequence property, we find a subsequence
o) da
(fnk)nkEN c CC (R )

such that f,,, = Wyh,, and ||fnk - I/Vgh”qr’w2 — 0, where
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(hnk)nkEN c (hn)neN-

Therefore ||hnk - f”Ls(W)’Z;ZjZ,Z — 0and (hnk)nkEN cCcr (Rd). Hence

R = L W51, (R?).

w1,W7

b) Since m: is weight of polynomial type, we have that Dgg* € L}‘,Z (]Rd).
Letbe f € CC(]Rd) c L’Z)I(IRd). Then we write

||%f||qr,w2 = ”f * Dsg*”qr,wz < ”f”qr,wzlleg*”l,wz < 00,

Hence C.(R%) c LyW)E%, (RY) c LE, (RY).  Since C.(RY) =

w1q,Wy

L, (R%), we find L;(W)E%7 (R?) = LF, (R?).

w1,W2

Theorem 2.3 a) L (W)Z’f”;z (R) is invariant under translations.

b) The mapping f — T,f is continuous from Ly (W)2%" (]Rd) into

w1,W7

L, (w)Pa" (]Rd) for every f € Ly(W)2%" (]Rd) and fixed z € R%.

wW1,W3 wW1,W3

¢) The mapping z - T, is continuous from R¥ into Ly(W )24 (]Rd).

w1,W7

Proof. a) Take any f € L;(W)0%7 (R%). So

wq,W2
felh, (R*)and Wy f € L(q, 7, w du)(R?).

Since I f llp,w, < @1@DIIflp,w,, we write T, f € Lz)l (]Rd) for all z € R®
(Fischer et al., 1996). Also by using the equality W, (T,f) = T, )W, f, we find
that

WAl < w2l @1)

qr,w3

for all z € R% (Duyar & Giirkanli, 2003). Then we have

1
TNl wypar, < o1 @fllpo, + w2 (D)W f||

qr,wz

and so T,f € Ly(W)P:97 (Rd).

w1q,Wy
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b) Take arbitrary f € Lg(W p’q’rz Rd) and € > 0. Let § > 0 such that

w1,w

&
o=

w1(2) + w; (Z)%.

If”f”LS(W)szZ)Z < &, then ”f”p,(ul =< ”f”LS(W)Z‘;Z)Z < & and

If lgrw, < WFNlL apar < 6.

Also since [|[W, (T ., < wz(z)3||wg fll ., we find that

1
Tl mpar, < 01@f llpw, + w2 ()| W f||

qr,wz

<6 <cu1 (z2) + w, (z)%> <e&.

¢) Given f € LS(W)IZ)'?"LZ (Rd). We know that the translation mapping is
continuous from R into LP) (]Rd) (Fischer et al., 1996). For any ¢ > 0, if
1
llu — v|| < &; for u,v € R, then there exists §; > 0 such that
€
”Tuf - va”p,a)1 < E
Also since the translation mapping is continuous from R% into

L(q,7, w,du) (Rd) (Duyar & Giirkanli, 2003), for same € > 0, there exists §, >
0 such that if ||u — v|| < &, for all u, v € R%, then

”%(Tuf - Tyf)”qr,wz = ”%(Tuf) - %(va)”

qr,w>
£
= [TawoWsf — TwoWef ||qmz <37
Let § = min{6,, 62}. If ||[u — v|| < &, then
”Tuf - va”Ls(W)Z)ZZ)Z
£ ¢
= ”Tuf - va”p,ou1 + ”VVg(Tuf - va)”qr,wz < E + E =& u
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Theorem 2.4 Ly (W Z;Z’Z)Z ]Rd) is a Banach function space.

Proof. Letbe f € L, (W)2?), (]Rd). There exists C > 0 such that

wq,Wy

|| \reona = cirt,

where a compact subset K € R%. Then

[ reotde = € {iflla, + 1551, } = 1AL g

Also if we use that L, (W)P?" (]R{d) is a Banach space and the last

w1,W7

inequality, we find that this space is a Banach function space. [ ]

Theorem 2.5 Let w, < w;. The space LS(W)IZ;f,‘Z)Z(Rd) is an essential

Banach module over L, (R%).
Proof. Letbe f € L, (W)2?), (]Rd) and h € L}Dl(]Rd). The we have

w1q,Wy

If *hllp,w, < Ifllpw, Ihll10, (4.2)

and

”M(g(f* h)”qr,a)z = ”(f*h) *Dsg*”qr,wz

< hllyw, If * Dsg™ llgrw, < ||h||1,w1||%f||qm2- (4.3)
So by (4.2) and (4.3), we have
”f * h”Ls(W)zZZ)Z = ”f * h”p,(ul + ”M(g(f * h)”qr,wz

< WAl oy {1 Ty + W, o, = Wl Uz }

qr,w>

Therefore we find that L, (W)2%" (]Rd) is a Banach module over L%, ) (]Rd)

wq,Wy

(Larsen, 1973; Liu & Rooij, 1969). Now we show that

L, (R*) = Ly (W o, (RY) = LS(W)‘;;Z{,Z(W).
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It is known that L% 1(]Rd) has a bounded approximate identity (Gaudry,
1969). Let U be neighbourhood of the unit element of R%. We can choose an
approximate identity (e,)qe; Which is positive bounded and suppe, c U,
lleglls = 1forall @ € I. Take h € LS(W)Z)’f"Z)Z (]Rd). Then

lea, = h =]

,q, 7
L5,

= J eq,(2) T,h(y)dz — J €a,(2) h(y)dz
R4 R4

,q,7
Ls(W)Z)Z,wZ

_ de ea, (@) (T,h(y) — h(3))dz

LS(W)Z,Z:Z)Z
< Juaea,@ ITh = hll, gy ypar dz.

where fixed ag € I. Since the translation mapping z — T,f is continious
from R® into Lg(W)ET7 ]Rd) by Theorem 2.3, given any € > 0, we say that

w1,W7

T,h—h ar < E.
” z ”Ls(W)IZ)Z,wZ

Therefore we get

“eao *h- h”Ls(W)f;lfsz = JRd ¢ay (2) £dz = &.

That means L, (R%) * Ly(W)5Y, (RY) = L{(W)5Y (R?). Using

Module Factorization Theorem (Wang, 1977), we obtain that L (W Z’sz)z (]Rd)

is an essential Banach module over L%, L (]Rd).

Corollary 2.6 Let w, < w;. Assume that (ey)q,e; 1S an approximate
identity in L1, 1(]Rd). Then (ey)qe; is an approximate identity of the space

L w)Per (R4).

wq,Wy

Proof. From the Theorem 2.5 and (Doran & Wichmann, 1979), the proof is

easily achieved. u
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3. INCLUSION PROPERTIES OF THE SPACE L,(W)} %7 (R4)

Theorem 3.1 If LWL, (RY) c LyW)LTD (RY),  then

L;(W ’(1’;%3 ]Rd) is a Banach space under the norm

A1l = Il g, + 1, qupar

Proof. Let (f;,)nen be a Cauchy sequence in (Lg (W)fj;j;&(u@d), II.1I, )- So

(fi)nen is a Cauchy sequence in the spaces (LS w 5;3’;3(]1%01), 111, P )
S wq,03

and ( Ly(W)Par (]Rd)’ 1Nl LWBST, ) Since these spaces are Banach spaces,

Wy,Wy

there exist f € Ly(W p’q'r4 ]Rd) and h € Ly (W)Z’f}’;3 Rd) such that

Wy, w
U = o, = O W = Rl oz, =0

From the inequalities ||. ||, < ||. ||Ls(W)2,'Z[Z>4 and ||. ]I, < |I. ”Ls(W)ZJZ,'ZB’ we

have ||f,, — fll, = 0, lIf, — hll, = 0. So since

If = hlly < llfa = Fllp + llfa = Rl

we find that ||f — hl[, = 0 and f = h. Hence

Ifo = fll, = O and f € (LeW)ETE (RE), 1111, ). .
Theorem 3.2 If w = max{w,, w3} and m = max{w,, w,}, then we have

LsW)ETE (R)NL,WHEIT (RY) = Ly(W)E LT (RY)

w1q,Wy

Proof. Let f € Lg (W)E;?,;{ (]Rd) be arbitrary. Then

<Wfllpw + |Wfl| . <o

qr,wy qrm

Al ayzar = I lpo, + Vol

and so f € Ly(W)ET" (]Rd). Similarly f € Ls(W)’Z;Z,’Z,4(Rd) is written.

wq,Wy

Thus we have

L W5 (RY) & LiW)gle, (R)NL, WG, (RY). (4.4)

w,m
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Conversely let f € L, (W)29" (Rd)ﬂLS(W)p’q’r (]Rd). Since the

w1,W3 W3,Wa

assumption w = max{w;, w3} and m = max{w,, w,}, we achieve

f € LWL (RY).

So we have
Ls(W)LTL (RO)NL(WHLEL (R?) € Ly (W)L (R?). (4.5)

Hence by (4.4) and (4.5), we get

Ls(W)PI7 (RO)NL;WHETE (RY) = Ly(W)D%T (RY). n

w1q,Wy w3,Wy
Theorem 3.3 If w; < w; and w, < w,, then

LW (RY) < LyW)P (RE)

w1,W3 W3,Wa

forall f € L{(W)L"7 (R?).

wq,Wy
Proof. Since the assumptions, there exist Cy, C, > 0 such that
w1 (1) < Cws(t)

and wy(t) < Cow,(t) forall t,z € RY. Let f € Ly(W)5% (RY). So

wq,w

f € Lf, (R*)and Wyf € L(q, 7, w dp)(R?).

Then
1y < CullF o and W f] < il
We find f € Lg(W Zq(fm (]Rd). Hence we obtain
Ls(W)5ia,(RY) € Liw)ZTE, (RY). .

Theorem 3.4 If Suppose that L,(W)? q ! ]Rd) c L;(w)Par (]Rd). Then

w3,Wy

there exists a C > 0 such that
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Il oz, < WLz,
for each f € Ly(W)L77 (R?).

Proof. If we endow the space Ls(W)%,% (R%) with the norm

w1,W

”f”L = ”f”LS(W)(IzZZ)Z + ”f”LS(W)gg:

w1,W7

then the space (LS wHear (]Rd), 111, WP ) is a Banach space by from
s w107

Theorem 3.1. Also using Closed Graph Theorem, there exists a C > 0 such that
Wl oz, < WLz,

for each f € Ly(W)D77. (]Rd). |

w1,W7

Theorem 3.5 For every 0 # f € Ly(W p’q‘rz IRd), there exists C(f) > 0

wq,w

such that

1
C(f)wl(z) =< ”TZfllLs(W)zJZZ)Z < <(U1(Z) + wz(z)q> ”f”LS(W)fJZZ)Z

Proof. Take any 0 # f € L,(W)P4" (]Rd). There exists C(f) > 0 such

wq,Wy

that
C(Pw1(2) < T fllpw, < 01 @Dfllp,0, (4.6)
(Feichtinger & Giirkanli, 1990).

On the other hand, using the inequalities (4.1) and (4.6), we obtain

C(f)a)l(Z) < ”Tzf”p,w1 + ||%T2f||qr,w2

1
< 01D fllpw, + 02| WS

qr,w3

1
< 01@fllpw, + 02| WS

qr,w3

1
< w(z ar + wy(2)1 4T
LI gypar. +©2@f Nl gupar
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1
= (01 + @207 If o,

This completes proof. u

4. COMPACT EMBEDDINGS OF THE SPACE
L (W) w,(RY)

w1,02

Lemma 4.1 Let (f;,),eny be a sequence in LS(W)z)’f"Z)Z (]Rd). If (f)nen

converges to zero in Ly(W)575 (R?), then

[ mekeax o
R4

for n —> oo and for all k € C.(R%).

Proof. Assume that k € C.(R?%) and % + % =1.So0

[ fu GO GI] < Wkl fally < Well 1 fell s (47)

is obtained. From assumption and (4.7), we find

[ mekeax o
R4

for n —> oo and for all k € C.(R%).

In the following theorem, we use the similar technique of proofin (Giirkanls,
2008).

Theorem 4.2 Assume that w;, w, are weight functions of polynomial type

u(x)

and u is weight function on R%. If u < w; and + 0 for x — oo,

w1 () + wz(x,5)

then the embedding of the space Lg(W)%T7 (]Rd) into Lﬁ(]Rd) is never

wq,Wy

compact.

Proof. From the assumption u < w,, we say that there exists C; > 0 such
that u(x) < Cyw,(x) for all x € R%. This implies
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LswW)5o (RY) c L7 (R?).
Suppose that (t,)nen i a sequence with t, — o as n - o in R%. Also
u(x)

w1 (X)+ wy(x,5)

ux) > § > 0 for x - oo. Fixed f € L;(W)2%", (Rd)

w1 (0)+ wz(x,s) — W1,W;

since the assumption does not tend to zero as x — oo, there exists

d > 0 such that

and t, € R, we define a sequence (fy,)nen such that

fo = (01(tn) + 3t ) ' T, f

Also Lemma 4.1, we have

Wally pzar, = [|(@1(t) + 02(tnt)) ' To, f|

LW

-1
= (wl(tn) + wy(ty, to)) ”Tt”f“Ls(W)fjg:Z)Z

-1
< (wl(tn) + w,(ty, to)) (wl(tn) + w,(ty, tO))”f”Ls(W)m,'Z)Z
= WAl amper,,-

That means this sequence is bounded in LS(W)p’q'TZ(]Rd). On the other

1,0

hand, we will show that there wouldn't exist norm convergence subsequence of
(fn)nEN in Lﬁ (Rd) Then

() k(x)dx

1
<
wl(tn) + (‘)Z(tn: tO) R

d|Ttnf(x)||k(X)|dx

S o F oty WlslTe A,

e NN “8)

w1 (tp)+ wy(tnto)
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is written where %+ % =1 for all k € CC(]Rd). The last inequality (4.8)

tends zero for n — oo, then we find
fRd fa(Ok(x)dx - 0.
By Lemma 4.1, the only possible limit of (f;)ney in LY (Rd) is zero. Using
I7: £, ~ uen.
So there exists Cy, C, > 0 such that
Crulty) < T f1l,,, < Coultn). (4.9)
Using the inequality (4.9), we have

I fullyo = ||(a)1(tn) + wy(ty, to))_thnf”p,u

= (01(tn) + w2t t)) " [T f 1,
> Cu(ty) (w1 (tn) + wz(tnrto)) (4.10)
Also since
u(tn)

=>6>0

w1 (t)+ wy(tns) —

for all t,,, and from the inequality (4.10), we obtain

-1
fllpu = Cru(ty) (wy(8) + wa(ty, t)) ~ > 8C; > 0.

Therefore we say that there would not be possible to find norm convergent

subsequence of (fy)pen in LY (Rd). The proof is completed. [ |

Theorem 4.3 Assume that w;, w, are weight functions of polynomial type

and w3, w, are any weight functions. If w3 < w1, wy < w, and

w3(x)
w1 (x) + wy(x,s)

+0
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for x - oo, then the embedding of the space Lg(W p’q’rz ]Rd) into

wq,w
,q,r :
Ls(W)5o5 (R?) is never compact.

Proof. From the assumptions w3 < w; and w,; < w, and by from Theorem
3.3, we have that L(W)Z?" (]Rd) c L,(w)a” (]R{d). The unit map is a

w1,W3 W3,Wa

continuous from Lg(W)2:%" (]Rd) into Ly (W)P:47 (]Rd). Suppose that the unit

w1,W3 wW3,W4

map is compact. Let (f)ney in Lg(W)PLT (]Rd) be an arbitrary bounded

wW1,W2
sequence. If there exists convergent subsequence of (f)nen in

Ls(W IZ;Z_’ZM(Rd), this sequence also converges in L’a’)3 (]Rd). But this is not

possible by Theorem 4.2. This completes the proof.

5. CONCLUSION

The wavelet transform acting like a microscope gives us local information
of signals at any time and any size. Thanks to this property of the wavelet
transform, wavelet theory is an important field for harmonic analysis, applied
mathematics, signal analysis. In this chapter, using the wavelet transform, the

space Lg(W 5)'?,'2)2 Rd) is defined and some fundamental properties are

considered. Then the inclusion and compact embeddings theorems are proved.
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Chapter 5

BILINEAR MULTIPLIERS OF FUNCTION SPACES
WITH WIGNER TRANSFORM
Assoc. Prof. Dr. Oznur KULAK

Department of Mathematics, Amasya University

1. INTRODUCTION

Throughout this work S(R) denotes the space of complex-valued
continuous functions on R rapidly decreasing at infinity, respectively. Assume
that f is a complex-valued measurable function on R. The space LP(R), (1<
p < ) denotes the usual “Lebesgue space” (Reiter, 1968). A continuous and
measurable function w satisfying 1 < w(x) and w(x +y) < w(x)w(y) for
x,y € R will be called a “weight function” on R. Let a = 0. The function

w,y) =1+ x| +|yD®

which is defined on R? is called “weight of polynomial” type (Gasquet &
Witomski, 1999). For 1< p < oo, the weighted “Lebesgue space” is defined by
1P (R) = {f:fw € LP(R)} (Reiter, 1968). The translation, character and

dilation operators T,;, M, and D are given by

Tof () = f(x = @), Mof () = ™9 £(x), Def (o) = Is|2f (%)

respectively for a,x € R, s # 0. For f € L'(R), the Fourier transform is

denoted by f. Also the Fourier transform of the dilation operator is

Dsf (&) = Ds-1£(§)
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for all £ € R (Grochenig, 2001). The set M(R) denotes the space of
bounded regular Borel measures. Also we denote by M(w) the space of u €
M(R) such that ||ull, = fIR wd|u| < oo. For u € M(w), the “Fourier-Stieljes
transform” is denoted by £ (Rudin, 1962).

Let 0 # g € L?(R) be window function. The “Gabor transform” (short-

time Fourier transform) of a function f € L2(R) with respect to g is given by

VfGow) = j F )0 = De W dy
R

for x,w € R (Grochenig, 2001). For 7 € (0,1), the “t —short-time Fourier

X w

transform” of f with respect to g is given by Vi f(x,w) =V, f (T'?) for
x,w € R (Boggiatto et al., 2007:235-249).

The “cross-Wigner distribution” of f, g € L*(R) is defined by

W, g)Cow) = [ £ (x+3) g (x-3)emay

R

for x, w € R. The cross-Wigner distribution which is a quadratic time-
frequency representation, gives us information about the amount of signal energy
during the any time period the energy density in time-frequency plane. For T €
(0,1), the T —Wigner transform is defined by

W, (f, 9) G w) = j F&+ )G = A= DyJe- 2y
R

for x,w € R (Grochenig, 2001). Also the T —Wigner transform has the
following relation with the Tt —short-time Fourier transform (Kulak &
Omerbeyoglu, 2021:188-200).

2ixw 1

W(f9)low)=e © ———V5  f(x,w)

JT(l—1) =2
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Let w, Y be weight functions and letbe 1 < p,r < o, T € (0,1). The space
C W(}i ’;‘T(]R) consists of all £ € L (R) such that their T —Wigner transforms

W, (f,.) are in L (R?). This space is equipped with sum norm
Ifllewere = fllpw + IWe(f, Dl s-

The space CW(}; ’;’T(R) is a Banach space with this norm (Kulak &
Omerbeyoglu, 2021:188-200).

2. THE BILINEAR MULTIPLIERS THEORY FOR
FUNCTION SPACES WITH WIGNER TRANSFORM

Let 1 S pl,rl,pz, T‘2p3,r3 < 0, T4, T2,T3 S (0,1) and (1)1,191, (1)2,192 (1)3,193
be weight functions. Suppose that wq,9;, w,, 9, are weight functions of

polynomial type and m(&,7) is a bounded, measurable function on R?. Define

B (f, 9)(x) = j j F(6)§ (ym(E, m)e™ €0 dgdy

R R

for all f, g € S(R). m EK3 said to be a bilinear multiplier on R of type
CW(PL 11,W1,91,T1; P2, T2, W2, 02, T ; P3, T3, W3, U3, T3)
(shortly C W(pl-, T, Wi, 191-,1'1-)), if there exists C>0 such that
1B (f, 9) ||CW£::§33'T3 < C||f||CW£;§11'T1 lg ||CW£§:§22~72

for all f, g € S(R). That means B, extends to a bounded bilinear operator

from
cwjlf;gi'“ (R) x CW(‘{’;;%'TZ (R) to CWj:"gz’@ (R).

BM [CW(pl, rl’(l)l, 191"[1; D2, 12, Wy, 192 f Tz’; P3, 13, W3, 193, Tg)] (Shorﬂy
BM [C W(pi,ri‘a)i,ﬁi,‘rl-)]) denotes the space of all bilinear multipliers of type
CW(pl-, 7 Wi, 191-,1'1-)). We denote by
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”m”CW(pi,ri,wi‘ﬁi"[i) = ”Bm”

In this work, we will assume that w,, 9, w,,9J, are weight functions of
polynomial type.

Lemma 2.1 (Holder Type Inequality for The Space C Wfl o (R))

Assume that k; and k, are constant numbers such that w3 = k¢, 93 = k.

fr+>= l, then there exists C > 0 such that
P1 P2 2
“fgllcwf)':‘gg = C”f”Cng:gll'Tl||g||CW£§:§22'Tz
forall f € CWff.'gi'Tl (R)and g € ijj’gz'fz (R).

Proof. Let f € CWai’i’l;i’Tl(R) and g € CW(fZZ,’g;'TZ (R). Take any h € S(R).
The following equation is known that

2mixw

W, (fg, h)(x,w) = \/%eTVth(fg)(x, w),(0<7<1).

Then from the Holder inequality, we get

1fglleyz2es = llfgllzw, + IWe(fg, W20,
w3,U3

~ Ifgllz + IW:(fg, Wl

< 1Iflly, llgll, + V5 . 1(f9)

fllp,llglly J— b« n(f9g ,

= Wl Igllp, + =5 Vo« nf0) (=) 2

= 1fllp, Igllp, + ||V> . n(F9) (5.1)
-1 2

Moreover since the Gabor transform is an isometry from L? (]R ) to

L? (R?) (Grochenig, 2001), using the inequality (5.1) we achieve

60



Lectures of Pure Mathematics on Algebra, Analysis and Geometry

Ifgllcyzzzs < M llp llglly, +1fgll2||D__h
w393 -1

2

< Wfllp,ligllp, + 1fllp ligllp, ||D_z_h
=

2

= fllp, Nlgllp, + Ifllp, lglip, IAll2
= fllpyw, 19,0, + 11fllpyw,lgllp, e, IR

< {1+ Rl llpy w, + IWECE, Dy 0, 3{11911p, 0, + IWECE, Wl 0, )

= Cllfllewpi7ei gl cyparas, where € = {1+ Ilhllz). .

Now let's give a theorem as an example of bilinear multipliers. In this work,
the weight functions {a)1 (az) + 191((ocz, 0))191((6121'1, 0))} and {a)z (Bz) +
192((,82, 0))192(([321'2, 0))} will be denoted by the symbols u,(z) and
vg(2) for a, B € R, respectively. Since the weight functions wq, 9y, w, Y, are
polynomial type, u, and vg are symmetric functions for ¢, f € R. That means

U (—2) = ue(2), vp(—2) = vg(2) for z € R.

1,1 1
Theorem 2.2 Let o + et Assume that k; and k, are constant numbers.
1 2

If ws ~ky, 93 ~k, and K € L},(R) such that w(z) = u;(2)v,(2), then
mEn)=K(E-n) is a bilinear multiplier on R of type
CW(pl, TL(U3, 191“[1; D2, 12, W3, 192 B Tz’; 2, 2, w3, 193, T3). Moreover there eXiStS

C > 0 such that

”m”CW(D1J’1,w3-191,T1;Z72,T2,w3,192 T2,2,2,03,93,T3) = C”K”L“"

Proof. Let any f,g € S(R) be given. It is known that f(x —z) €
CWail"gi'Tl (R) and g(x+2z)€CW) 22"1;2'” (R) (Kulak & Omerbeyoglu,
2021:188-200). If we use Lemma 2.1 and the (2.6) equality in (Kulak &
Giirkanli, 2013), then we have

03

1B (.9l gz5s = | [ £G = Dl + DK Gz
R

2,2,T3
CW(‘)3’193
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< [ WG =290+ Dl g2 KNz
R

< fR CITf W cyyprramaIT-zgll oy p2reee K (2)|dz. (5.2)
wq1,91 w2,92

Furthermore from Theorem 2.8 in (Kulak & Omerbeyoglu, 2021:188-200),
we can write

I f lleyprraes < {w1(2) +9,((2,0))9;((zr,, )} fllwprrae
w1,V1 w1,V1

= u1(Z)||f||CWP1'§1'H (5.3)
w1,V1

and

IT_2gllcypareme < {wz(=2) + 92((=2,0))92((—272, 0))}Igll ¢y p2re
w2,U2 w2,U2

= v1(2gll gy p2rae (5.4)

(1)2,192

Combining the inequalities (5.2), (5.3) and (5.4), we get

1B (f, Pl cyy227s < CIIfIICWm.rl-nIIQIICsz'rz.fzJ |K(2)|w(z)dz
(1)3,193 (A)1.191 (4)2,192 2

= Clifllgyprriallgll oy paraea (K]0 (5.5)
wq,91 w2,92
So we say that m(&,n) = K(& —n) is a bilinear multiplier. Also we obtain

”m”CW(pl,rl_w3,191,11;p2,r2,w3,192 T2,2,2,03,93,T3)

1B (s Dl -py2273
w393

- oy 71 gl
Il pames <19y pzraes <t Pllewprrazillglleyparar:

< ClIK|l,0- u
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Definition 2.3 Let 1< py,1y,p,,72p3,13 <00, 74,7T,73 € (0,1) and
wq,VY, w3, 9, w3, Y3 be weight functions. Suppose that w,, 9, w,, J, are weight
functions of polynomial type. We denote by

M[CW(pl, lea)l, 191’7,'1; pz, rz, (Uz, '(92 ) sz; p3, T'3, (1)3, 193, T3)]

(shortly M [C W(pi, T W;, 191-,7:1-)]) the space of measurable functions M: R —
C such that m(é,n) = M(é —n) € BM[CW(pl-, T Wi, 191-,1'1-)], that is to say

Bu(f, g)(x) = j j F(6)3 (M(E — e i€ gy

R R
extends to bounded bilinear map from C Wf;‘;i‘rl(R) x C Wf 22’,52:2 (R) to
C W(f:"gz'% (R). Also we denote
Ml cw (s wi0:) = 11Bumll

Theorem 2.4 Let pi +pi = %, wi(z) =1+ |zD%, 9;(z,x) = (1 + |z| +
1 2

|x)?%, a;, b; = 0 (i=1,2). Assume that k; and k, are constant numbers. If w; = k;,
U3 =k, € M(w), w(2) = uy(2)v1(2), andm(§, ) = fi(ag + pn) for a,p €
R, then mEe€ BM[CW(pl,er3,19L‘L'1;pz,rz,cu3,192 T2 2,2,0)3,193,13)].
Furthermore there exists C > 0 such that

”m”CW(I’LTL(03'191,‘[1;172,7”2‘0)3,192 T2,,2,2,03,93,T3) = C”ﬂ”w

Proof. Take any f,g € S(R). From Theorem 2.3 in (Kulak & Giirkanl,
2013), we know that

Bu(f,9)(x) = [ fx —az)g(x — Bz)du(z) . (5.6)
By from (Kulak & Omerbeyoglu, 2021:188-200), we can write

”Tazfllcwplrgl-fl < {a)l(az) + 191((6¥Z, 0))191((QZT1, 0))}”f”cwp1,§1-f1
w1,V1 w1,V1
(5.7)

and
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”Tﬁzgncwpz;z.rz < {0)2 (Bz) + 192((52' 0))192((521'2' 0))}”9”CW£§:§2212
(5.8)

Then by using (5.6), (5.7), (5.8) and Lemma 2.1, we have

1B (.9l gyzps < [ 17— adg e = B2l g5, dll2)
R

= CliTazf ”cwu’ji'gll'” ”Tﬁzg ” CWz;gzZ.rz d|ul(z)

B —

< J Cua(z)vﬁ(z) ||f||CWP1-1T91»Tl ||g||CWP2'T2-Tzd|H|(Z)

w1,91 w2,92
R
= Clifllgyparam lgllgyparze Jo ua(@vp(2) dlul(2). (5.9)
w1,U1 w2,V2

Firstly, assume that |a| < 1, |B| < 1. Then

uq(2) = w1 (az) + 9, ((az, 0))191((QZT1, 0))

=1+ |azD + (1 + |az])? (1 + |azT|)P2

< @+ [zD% + @+ [zDP1 A + |12t = uy (2)

Similarly we have vg(z) < v1(z) . Hence by (5.9), we find

1Bm (F, Dl oyyp221s < Clifllgyypiraes lgll sy, paraee J U1 (2)v4(2) dlpl(2)
w393 w191 2,92 2

= C||f||CWp1.r1.r1 ||g||CWP2'T212||Il||w- (5.10)
wq,91 w2,92

So we getm € BM[CW(P1'T1,0)3,191,T12 P2, T2, w3, 92,72 2,2, 0)3,193,773)]
and from (5.10)

”m”CW(pl,rl_w3,191,11;p2,r2,w3,192 T2,2,2,03,93,T3)
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”BTTL (f’ g)”CWZ'Z'T3

w393

- el 1T <s;1||g|| rorr<1 Wl cprries |Gl oy paraca < Cllulle
ewlgr = awggre=t L ewg iy Wil

Now, assume that || > 1,|8| > 1. Then
uy,(z) = wi(az) + 191((az, 0))191((a21'1, 0))
< (lal + lazD® + (la| + lazDP(la| + |az,z])"
= lal® (1 + [z)% + |a]?*1(1 + [z)" (1 + |712])"
<lal®|al?P1(1 +|z)% + |a|*|al?P1(1 + |zDP1(1 + |712])™
= |a|a1|a|2b1{w1(z) + 191((Z: 0))191((21'1, 0))}
= |a|®*?P1y, (2).
Also under same conditions, we have vg(z) < |f |92%2D2y,. (Z). So by (5.9)
1Bm (f, @Il 2275
w393
< Cla|®*2b1|g|a2+2b2||f]| .\ paraes gl gyppzraca il (5.11)
wq,91 w2,92
Thus we achieve
me BM[CW(pl,r1,w3,191,rl; P2, 12, w3,V2,72; 2,2, a)3,193,1:3)]
and from (5.11)

”m” CW(pl,Tl'(4)3,191,7.'1,'172,7"2,(1)3,192 ,12,;2,2,(1)3,193,‘[3)

1By (f, )l 2275
w393

B s 71 gl
”fllcwzll':gll'rlSl'llg”CWZZz':gzz'Tz51 f CWuI;;lL:;ll,Tl g CWZZ;::_;ZZ,TZ

< Cla|®*2bg|%2420 | ul,,.

Suppose that |a| > 1, |8| < 1. Since u,(z) < |a|**2?P1u, (z) and vg(z) <
v1(2) , it is obtained that
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ai+2b
1B (. Dl cy2255 < Clal 4 fllgypirams Igllgyperara Il (512)

Hence we find m €
BM[CW (py1, 71,03, 91T1; D2, T2, w3, 92 , T3 2, 2, w3, 93, 73)| and by (5.12)

”m”CW(pl,rl_w3,191‘11;p2,r2,w3,192 T2,2,2,03,93,T3)

1B (9l 225

= Sup w3,93 <
< <1 AN o llgll L parats
||f||CWp1'T1.T1—1r||g||CWp2.T2,T2 =1 Wy 91 W s 5o

(1)1,191 (4)2,192

Clal®*2 lpll,.

Finally suppose that |a| < 1,|8| > 1. Again since u,(z) < u,(z) and

vp(2) < |B|%2*%P2v,(2), we observe
1By (f, Dl 2275 < CIBI% 22| [l opyprraes |Gl oyyparaea il (5.13)
3,93 01,91 2,92

So we obtain m €
BM[CW(pl, T1IG)3,191,T1; D2, 12, W3, 192 ’ sz; 2, 2, (03,193,1'3)] and by (513)

”m”CW(pl,rl_w3,191‘11;p2,r2,w3,192 T2,2,2,03,93,T3)

= su

||f||cwz)111;91111 51,||g||cwz)22:92212 <1 ”f”CWquiglltl ”g”CW(z;gzzfz
< C|B|%2*2Pz |ul|,. L]

Theorem 2.5 Let m € BM[CW (p;, 11, w;,9;7;)]- Then
Mg pym € BM[CW (p;, 1i,w;, 93 7]
for each (a, b) € R?. Furthermore

1M capyml| ooz S L @UiOIMl (o0,

CW(pi,Ti’
Proof. Let f, g € S(R) be given. It is known that

BM(a,b)m(f' g) = Bm(T—afv T—bg) (5.14)
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by (Kulak & Giirkanli, 2013). Moreover we have
”T—af”CWplvgl»Tl S {wl(_a) + 191((—61, 0))191((_0,‘[2, 0))}|lf||CWp1.§1,‘[1
w1,U1 wq1,91
= w (@If llgyprrae (5.15)
w1,Y1
and
||T_bg||Csz.§z,rz < {w,(=b) + 9,((—b,0))9,((—b7,, 0))}||g||Csz,§z.Tz
w2,U2 w2,U2
= v1(D)Igll ;yp2raee . (5.16)
w2,192

If we use assumption m € BM[CW(pi,ri,a)i,ﬁi,‘ri)] and combine (5.14),
(5.15) and (5.16), then we get

Bt pym g)||CW£;§33,13 = 1B (T-af Tl cyps1ss

< ”Bm””T—af”CWPLTLTl ”T_bg”CWPz.rz.‘fz.
wq,91 w2,92
= ul(a)vl(b)”Bm””f”CWpl-’”l'Tl ”g”cwpz-rzﬂ'z (517)
wq1,91 w92
and so M, ,ym € BM[CW(pi, 7 Wi, 191-,1'1-)]. Hence by (5.17), we conclude

”M(a,b)m” W (piriwi9iT;)

|Brt @m0

= sup Wosy (B
170y prraeasillglyparamast I llgyririellgllcyparar
W91 W 59, w191 w397
< u (@vi DMl ew (o, r; w050, 7)- =

Lemma 2.6 Suppose that w, 9 are polynomial type weight functions. Let
f € CWSF(R). Then Dgf € CW,5" (R) for each 0 # s € R. Moreover

b
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1.a,b

IDsfll e < ClsP2 2 | fll e, if Is| > 1, for some € > 0.

Proof. Take any f € CW,)g" (R). If we setg = u, then

p
w(t)dt

1D llpo = 15172 f \f (2)
R

= Is172 {J,, IF @)IP w(su)sdu’

1

= Islz {J, 1FQOIP (1 + Isul)*du}’

(5.18)

Let geS(R) be given. Then D¢-1g9, Dz g€ S(R) and so
-1

D = (Ds-19) € S(R). Also since different windows yield equivalent norms for

-1

a Gabor transform by Proposition 11.3.2 in (Grochenig, 2001), there exists C; >

0 such that

IWe(Dsf, Dllro = |

We(£, Do) (So5w)|

9
|l e f(f sw)
Jt(1-1) D%(Ds—lg) s’ 9
T T,
1 X sw
- JT(1-1) VDLI(DS—lg)f (S(l—‘r) ’T) 9
T T,
< 1 v f( X sw>
=1 -l ?&Y \s(1-10)' ¢ o
1 2mixw X Sw
o ()
Jt(1—1) P \s(1-1) © b
c 1 Zm'waT f (x )
= —¢ 1 . —,Sw
! JT(1=1) P9 \s

9
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vy

weo o),

If we takef = u and sw = v, then

IWe(Dsf, 9 llrp < Ci |

o

R

w.(£,9) (sw)l|

1
r

W:(f, 9) G'SW)r 9 (x, w)dxdw

1

= ¢, {fR W, (f, 9) e, )17 (14 Isul + |5|)b dudv}r. (5.19)

Assume that |s| < 1. Hence by (5.18)

S

IDsf llpw = I[2 j FIP (1 + |sul) du
R

1

< Isfz {Jy 1FQOIP (L + [uD)?du}? = If 0 < . (5.20)

Since f € CW}3'* (R), we have W;(f, g) € Ly(R?). So by (5.19)

1
T
vinb
IWe(Dsf, 9)llr0 < Cy j W(F, ) w)I" (1 + Isul + | |) dudv
R

S

<G JlWT(f,g)(u,v)lr(1+ ful + |§|)b dudv
R

1
r

A1 v\
<G Hllwr(f,g)(u,v)l <H+|§|+|§|> dudv
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T

b
17
-G j W, (f, ) (I (1 + ul + [v])? dudy
R

b

=G V(9o < 0. (5.21)
Combining (5.20) and (5.21), we achieve

IDsfllcwpre = IDsf llpw + IWe(Dsf, @0

b
17
< ”f”p,w + Cl_ ”I/Vr(f'g)”r,ﬁ
N

17
<y (fllpo + 1%, 9l o)

b
=C|s|_?||f||CWp.§,r, where C = max{1,C; }.

Now let |s| > 1. Then by (5.19)

1 5
IDsfllpe = IsI2 j FIP (1 + |sul) du
R
1
1
<Isl2 j FQIP (sl + lsul)@da
R
= 1515 {f I QP (L + lubedu)” = Il o0l <o (522)

Again since f € CWﬁ'g’T(R), we have W, (f, g) € Ly(R?). From (5.19)
1
T

vinb
IWe(Dsf, Pllrp < C j IW(F, ) w)I" (1 + Isul + | |) dudv
R
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S

b
<& [t @@ wr (sl + lsul + [£]) dudv
R

S

<c j W, (F, ) ()" (Is] + Isul + [sv])P dudv
R

|

b
= Cyls|r JIWT(f,g)(u.v)lr(1+ ul + [v)Pdudv
R

b
= Cils| WL (f, @I (5.23)
By using (5.22) and (5.23), we obtain
IDsfllcwpre = IDsf llp.w + IWe(Dsf, @70

1 a b
_+_ —
<Isl2Plfllpe + Cils[TIIWL(f, Do

1+g+2 1+2+2
<IslZ? " fllpw + Cils|® P T IIW(F, @I

1.a,b

=Cls[Z 2" {|fllpw + IWe(f, Dllirs)

1.a,b
= C|s|2+P+T||f||CWp.r.r, where C = max{1,C; }. [ ]
w,9

Theorem 2.7 Assume that w5 and 95 are polynomial type weight functions.

Let 0 < s < oo and m € BM[CW (p;, 11, w;,9;7;)]- Then
Dym € BM[CW (p;, 1i,w;, 93,7 |

Furthermore

( b_1+b_z+g+b_3)|

— + .
”Dsm”CW(pi-Ti,wi'ﬁi,Ti) =Cs e P T |m”CW(pi,Ti,a)iﬂ9i,Ti)’lf s<1,

(l a1 b_1+2+b_2+b_3)

”Dsm”CW(Pi,Ti,wi,ﬁi,Ti) <Cs'2prevaveTs ”m”CW(Pi‘Ti,wi’ﬁi,Ti)’ ifs >1
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for some C > 0.

Proof. Take any f, g € S(R). For x € R, we take g =u,l=v

N

Bom(f, 9)() = j j F(6)§ (DDsm(E, e €12 dgan
R R

@3 msim (3 7) exmiconagan

%\
o

f(sw) g (sv)s~tm(u, v)e?™u+vs) g2 gy dy

Il
—
o

1 1 .
s2 f(su)sz2g(sv)m(u, v)e2™ W +vsx) gy dy

Il
—
o

D1 f(w)Dy-1§(v)m(u, v)e?™u+vs®) gy dy

Il
—
o

Dsf (W) Dgg(v)m(u, v)e2™+v:s¥) gy dy

Il
—
o

= Bu(Dsf, Dsg)(sx) = 572D -1 Bpa(Dsf, Dyg) (x) (524)

Let s < 1. By Lemma 2.6, assumption m € BM[CW(pi,ri,a)i,ﬁi,‘ri)] and
equation (5.24), we find

S0, B (D, D.9)|

”BDsm (f' g) ||CWP3,T3-T3 -
(1)3,193

WwP37T3.T3
w3 93

< 05 B D BANID Nl srrses 105Gy e
V1 2,V2

by by

b3
1438473

)||Bm||5 1||f||CWP1T1115 2||9||CWP2T212

2

SCS( D3 T3
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1+b1+b2 as b3)

+23173
— s IR 1Bl s g e
2

for some C > 0. Thus we achieve

_( by by as b3)

”Dsm”CW(pi-Ti,wi,ﬁi,Ti) <Cs T1 T2 P3 T3

”m”CW(plrlw i Tl)
Lets > 1. Again by Lemma 2.6, assumption m € BM[CW(pi, T, Wi, 191-,1'[-)]

and equation (5.24), we have

”BDSm(f'g)||CWP3-17;3,T3 =S ZD -1 m(Dsf Dsg)”
w3,U3

p3 73,73
w3, 9

1 b3
< Cs 2573 Byl Ds f |l oypyprraes |Dsgll oy p2raea
wq,91 w292

1 bz (1 Lo b1

1 a2 bz)
< Cs™2573||Byls

214 (GH2+2
2'pp T ||f|| Wplrl‘rls 2 p2 T2 ||g|| WP2T2T2
92

(1+a1+b1+a2+b2+b3)
=(Cs\2 p1 11 p2 T2 T3

|| B |l ||f||CW£;:§1111 llg ||CW£§:§22'TZ

for some C > 0. Therefore we obtain

(1 alLblLaszszg)

”D m”CW(p Tiwi ‘L'l) <(Cs'2 P1 7Pz 273 ”m”CW(erlw i TL) u

Theorem 2.8 Let m(sé&,sn) =m(é,n), 0 <s <o and let w3, 93 be
polynomial type weight functions. Then m € BM [C W(pi,ri,wi,z‘)i,‘ri)] if and
only if Dym € BM[CW (p;, 1y, w;, 9, 7;)]-

Proof. Let f, g € S(R) be given. Suppose that s # 1. Using the (5.24) and

assumption m(sé, sn) = m(&,n), we take su = &, sv =17

Bom(f, 9)(®) = 5 2Dy1 B (Dsf, D5g) ()

- j j Df () Dig (v)m(u, v)e w250 gy
R R
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= J JDS—1 F)D-1(v)m(u, v)e? X u+vs®) gy dy
= J Jsf(su)ﬁ(sv)m(u,v)eZ”i(””'Sx)dudv

=571 [ [ 7@5 am (2. 2)ermsemaeay
R

=

F(©)g (m(g,me* ¥ dedn

II
%\
B —

= S_le(f' g)(x)

Letm € BM[CW(pi, ri,mi,ﬁi,ri)]. So we find

— le—1
||BD5m(f'g)||CW£::§z'T3 = |[s7* B (f, g)”CWg::ngs

< 7 mllew (oo 00,20 I ez gl gyyparare.

Hence we achieve Dgm € BM[CW (p;, i, w;, 9; 7;)|. Suppose that
Dym € BM[CW (py, 1w, 9, 7;) |

Then we have

”Bm(f g)llCWp3T31'3 = ”SBDSm(f g)” P33T
w3193

= S”Dsm”CW(pi,ri'wi,{)i'Ti)”f”cw{fii":;ll'rl”gllcwﬁj:gzz'fz'
Thus we obtainm € BM[CW(pi, T W;, 19l-'1'i)]. [

Theorem 2.9 Let m € BM[CW (p;, 1y, w;, 9; 7;)|. If ® € LL,(R?) such that
w(a,b) = u;(a)v,(b), then Pm € BM[CW(pi,ri,mi,ﬁi,ri)] and
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”(Dm”CW(piJTi,wiﬂ‘)i,Ti) < ”cblllaw”m”CW(pi,Ti,wi,ﬂi_‘ri)

Proof. Assume that ® € L (R?). Take any f, g € S(R). It is written by
(Kulak &Giirkanli, 2013)

Ban(, 0@ = [ | ®@hBu_,_,m(F9) ()dads
R R

By assumption m € BM[CW(pi,ri,a)i,ﬁi,‘ri)] and Theorem 2.5, we get
M(_q—pym € BM[CW (p;, 1y w;,9;7;)] and

”M(a’b)m”CW(piJTi,wi;ﬁi,Ti) < Uuq (a)vl(b)”m”CW(pi,Ti,(Ui,l‘)i,Ti)
So,
I1Bom (f Dl cyparses
u)3,193
< J J ||<I>(a, b)BM(_a,_b)m(f,g)||CW(p'T'w_19'T') dadb
R R vl WUt
= J chb(a; b)l ||BM(_a'_b)m(f’g)||CW(p-r-w-19-T-) dadb
R R T, WLV T

|(D(a' b) | ”M(a’b)m||CW(pi.Ti,wiﬂ9i,Ti) ”f”CW(ﬁ;gllTl ”g”CW(ng’;ZZTZ dadb

IA
o —
e

< [ [ 196 b)lus @ vy DIl cyy gy 1 | i gl ravs dadb
’ ’ Y1 292

o —
e

= ”CD”l,w ”m”CW(pi,Ti'wi,l‘)i"[i) ”f”cwﬁi:gll'fl ”g”CWuI;;’;ZZ-TZ . (525)
Therefore by (5.25), we observe that ®m € BM[CW(pl-, T W, 191-,1'1-)] and

”q>m||CW(pi,Ti,wi,19i_Ti) < ”q)”]”w”m”CW(pi,Ti,wi,ﬁi'Ti)‘ |
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Theorem 2.10 Let m € BM[CW (p;, 1yw;,9;7;)] and let w3, 95 be
polynomial type weight functions.

a1+b1+a2 by b3

a) Ifd e Lt (R+,s_(1+l’1 1Pz T2 T3)> such that s < 1, then

md6m=Jnmﬁmﬂﬂﬂ®€mﬂﬂﬂmnwﬂﬂm
0
Furthermore, ||mg ”CW(pi,

Ti,wiﬂ')i,'fi)

< Cl||® m ...y forsome C > 0.
120 oottt ot

1 b1+b2 asz , bz

b) Ifd € Lt (R+,s(2 1Tz P3 T3)> such that s > 1, then

me(&,n) = J m(sé&,sn)P(s)ds € BM[CW(pi,ri,a)i,ﬁilri)]
0

Moreover ||me || W (piriwiditi)

<Cl|® a fi C >0.
<l ||L1 <R+’S<%+Irz_i+lrv_§+ﬁ+zz_:)>||m||cw(pi,ri,wi,19i_fl.) or some
Proof. Let us take f, g € S(R). Then by Fubini Theorem,

&%UJX@=JJfGMMM@®m¥M““WMn

R R

Il
—
o

f©gm J m(s¢, Sn)¢(5)d5} e?mm N dedn
0

oo

f(f)g\ m JDS—1m(f,n)CD(s)s_%ds}eZHi(fH?,x)dfdn

0

Il
B
—

= Jy Bo_m(f, 9ED(s)s 2ds. (5.26)
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a) Let s < 1. If we use m € BM[CW(pi,ri,wi,ﬁi,ri)] and the equality
(5.26), then we have D.-1m € BM[CW(pi,ri,a)i,ﬁi,‘ri)] and

- 1
1B )l 23755 < j B>, o (f 9D || 10515 ™2ds
w3,U3
0

1
SJ”Ds‘lm”cw(pi,rl-,wi.ﬂi,n)||f||CW£i'§11'Tl||g||CW£§'§22'TZ|q’(S)|S 2ds

2 44, b1 +32, bz b3)
JCS p1T1 D2 T2 T3 ”m”CW(plrlw 9 TL)”f”CWplrlrl”g”cwpz‘rzrzlq)(s)lds
0

(o]
148, b1 as by D3

= C”m”CW(plrl(u 9 T)”f”CWplrlrl”g”CszrzrzJS plTrlszTrsz)l(I)(s)lds
0

= C”m”cw(pi,rtwi,ﬂi_n)”f”cwgi:gllffl||g||CW£§:§22'T2 ||¢||L1<IR+S (1+g_1+b_1+g_§+lr’_§+lr’_§)>

and so mg, € BM[CW(pi,ri,wi,ﬁi,Ti)]. Then

”mq’”CW(Pi,Ti,wz'ﬁi,Ti) = Cllq)llu(nw (1+Z—1+?—1+Z—§+3—§+—)>”m”CW(m Wi Th)

b) Assume that s > 1. Then by m € BM[CW(pi,ri,wi,ﬁi,Ti)] and the
equality (5.26), we find D-1m € BM[CW(pl-, T Wi, ﬁijri)] and

1
(RG] —— j B>, o (f )| 10515 72ds
w393
0
_1
<J”Ds_lm”CW(pi,ri,wi_ﬂi’Ti)”f”CW(ﬁ’i:gll'Tl||g||CW£§:§22'TZ|q)(S)|S 2ds

r (Loba, b2, 0 bs)
<JCS 2'r T2 p3 T3 ”m”CW(plrlw 9 T)”f”CWplrlrl”g”Cszrz‘rz|CD(S)|dS
0
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r (Loba, bz, 0, bs)
= C”mllcw(pi,ri,a)i,ﬁi,ri)”f”cwﬁi'gll'fl”g”CW(Z’Z'Z;ZZ'TZJS 2'm 12 P37/ |P(s)|ds
0

= Cllmllc oy, I ez N9 leypzzaesll @l )

Thus we obtain mg, € BM[CW(pi, T; Wi, 191-‘1'1-)] and

||mq)||CW(pi'ri.“’iﬂ9i,Ti) = Cllq)”Ll(IRts(%*%’“%Jrz_g*%))llmllCW(pi,rl"wiﬁi'n) -

3. CONCLUSION

Theory of bilinear multipliers has been studied in a number of papers
(Coifman & Meyer, 1978; Gilbert & Nahmod, 2000; Gilbert & Nahmod, 2001;
Grafakos & Kalton, 2001). In our previous works, we investigated bilinear
multipliers and gave examples for weighted Lebesgue spaces, small Lebesgue
spaces, weighted Wiener amalgam spaces, weighted Lorentz spaces, variable
exponenet Lebesgue spaces, variable exponent Wiener amalgam spaces, variable
exponent Lorentz spaces, etc (Kulak & Giirkanli, 2013; Kulak & Giirkanli, 2014;
Kulak & Giirkanli, 2017; Kulak & Giirkanli, 2021). This chapter deals with the
theory of bilinear multipliers on C W(f’ ’g'T(R) which was studied by (Kulak &

Omerbeyoglu, 2021). In this work, the bilinear multipliers space is defined, and
then exemplary theorems are proved for this function space characterized by the
Wigner transform.
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1. INTRODUCTION

Recently the field of nullity distributions has become very interesting topic
in differential geometry. Gray (Gray, 1966) and Tanno (Tanno, 1978) introduced
the notion of k-nullity distribution (k € R) in the study of Riemannian
manifolds (M, g), which is defined for any p € M and k € R as follows

N(K):p = Ny (k) = {W € T,M: R(U,VIW = k[g(V, W)U — g(U,W)V]}

for any U,V € T,M, where T,M indicate the tangent vector space of M at
any point p € M and R means the Riemannian curvature tensor of type (1,3).
Next Blair, Koufogiorgos and Papantoniou (Blair, et al., 1995) introduced the
(x, w)-nullity distribution which is a generalized notion of the k-nullity
distribution on a contact metric manifold (M2"*1, ¢, &, 1, g) and defined for any
p € M?"*1 and k, u € R as follows

N(x, w):p = Np (e, 1)
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= (W € T,M*™ . R(U, VW = k[g(V,W)U — g(U,W)V] +
ulg(V,W)hU — g(U, W)hV]} (L1)

where h = %{’ ¢®, and ¥ denotes the Lie differentiation.

In (Dilego & Pastore, 2009), Dileo and Pastore introduced the notion of
(k, w)'-nullity distribution, another generalized notion of the k-nullity
distribution, on an almost Kenmotsu manifold (M2"*1,¢,&,n,g), which is
defined for any

p € M?"*1 and k, u € R as given
N(x, )" :p > Ny (x, 1)’

= (W € T,M*™ . R(U, VW = k[g(V,W)U — g(U,W)V] +
ulg(V,WHr'u — g(U WHR'V]}  (1,2)

where h' = h o ¢.

Kenmotsu (Kenmotsu, 1972) introduced new type of almost contact metric
manifolds called Kenmotsu manifolds these days. To take into account M2"+1
be an almost contact metric manifold with almost contact structure (¢, §,7, g)
given by a (1,1)-tensor field ¢, a characteristic vector field £, a 1-form 7 and a

compatible metric g satisfying the conditions (Blair, 1976; Blair, 2010).
P?=-1+nQ®¢ d§=0,n(¢)=1n°¢p =0, (1.3)
g(@U,9V) = g(U,V) —n(U)nV) (1.4)

for any vector fields U and V of T,M Zn+1 The fundamental 2-form € is
defined by Q(U,V) = g(U, ¢V). The restriction for an almost contact metric
manifold being normal is analogous to vanishing of the (1,2)-type torsion tensor
Ny, defined by Ny, = [¢, p] + 2dn &® &, where [, @] is the Nijenhuis torsion
of ¢ (Blair, 1976). A normal almost Kenmotsu manifold is a Kenmotsu manifold
such that dn =0 and dQ =2nAQ. Also Kenmotsu manifolds can be
characterized by (Vy @) (V) = g(¢U,V)E —n(V)¢U, for any vector fields U, V.
It is well known (Kenmotsu, 1972) that a Kenmotsu manifold M?™*1 is locally

a warped product [ Xy N2", where N?" is a Kdhler manifold, [ is an open
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interval with coordinate t and the warping function £, defined by f = ce® for
some positive constant c. Let us denote the distribution orthogonal to & by D and
defined by D = Ker(#) = I,,,(¢). In an almost Kenmotsu manifold, since 7 is

closed, D is an integrable distribution.

2. ALMOST KENMOTSU MANIFOLDS

Let M2™*1 be an almost Kenmotsu manifold. We denote by h = %1? ¢¢ and

[ = R(-,&)& on M?™*1 The tensor fields [ and h are symmetric operators and
satisfy the blowing in the same direction

£=0, E=0, tr(h) =0, tr(h¢) =0, hp + ph = 0. (2.1)
Furthermore, for the subsequent results (Dileo, 2007; Gray, 1966).

Vyé = —¢*U(> VeE = 0) 2.2)
Plp — 1 = 2(h? — ¢?) (2.3)
RU, V)¢ =nU)(V — ¢hV) —n(V)(U — ¢hU) + (Vyph)V — (V,ph)V (2.4)

for any vector fields U, V. The (1,1)-type symmetric tensor field h' = h o ¢

is anticommuting with ¢ and
h'é=0
Also it is explicit that
h=0eh =0, h'? = (k+ D¢p? (& h? = (k+ 1)¢p?) (2.5)
which grip on (k, 1)’ -almost Kenmotsu manifold.

In 2014, Shaikh and Kundu (Shaikh & Kundu, 2014) to imported and
studied a type of tensor field, called generalized B curvature tensor on a
Riemannian manifold. It count the structures of quasi-conformal, Weyl-

conformal, conharmonic and concircular curvature tensors and it spell out as

B(U, V)W = poR(U, VIW + p1[S(V, W)U — S(U, W)V + g(V,W)QU
—g(U,W)QV]

&3
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+2p2r [g(V, W)U — g(U, W)V] (2.6)

where R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci

operator and the scalar curvature respectively.
Thus, the B-curvature tensor is classified as

i) The quasi-conformal curvature tensor C (Yano & Sawaki, 1968) if

1
Po=a,py=bandp, = —-[-=+2b] 27)

2n

ii) The weyl-conformal curvature tensor C (Yano, 1984) if

Po=1pi =~ Sandp, = ;s (2.8)
iii) The concircular curvature tensor C*(Yano, 1940) if
Po=1,p1 =0andp, = _n(n1—1) (2.9
iv) The conharmonic curvature tensor H (Ishi, 1957) if
po=1,p = _(nil) andp, =0 (2.10)

3. & LINKED WITH (x, u)-NULLITY DISTRIBUTION

In this section we consider almost Kenmotsu manifolds with ¢ belonging to
the (x, u)-nullity distribution satisfying B=0, ¢-B flat and ¢-B flat, where B is

the generalized B-curvature tensor. Then from (1.3) we have

R(U,V)¢ = k[n(VYU —n(U)V] + u[n(V)RU —n(U)hV] (3.1
where k, u € R. Before cited our main theorem, we recall some results.

Theorem 3.1 (Dileo & Pastore, 2009). Let M?™*1 be an almost Kenmotsu
manifold of dimension (2n + 1). Such that the characteristic vector field § linked
to the (k, w)-nullity distribution. Then k = —1, h = 0 and M?™*? is locally a

warped product of an open interval and an almost Kahler manifold.

&4
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With the hand of (3.1) and Theorem 3.1 we have the following properties

R(U,V)§ =nU)V —n(V)U (3.2)
nRWU,VIW) = gU,W)nV) — gV, W)n) 3.3)
RE, UV =—gU,V)§ +n(V)U (3.4)
S, U) = —2nn(U) (3.5)
Q¢ = —2n¢ (3.6)

for any vector fields U,V on M?"*1. Therefore, we prove the following
result.

Theorem 3.2 An almost Kenmotsu manifold M?™*1 with € belongs to the
(x, u)-nullity distribution is B-flat if and only if the manifold is locally isometric
to the hyperbolic space H2"+1(—1).

Proof. Let M?"*1 is B-flat, that is, B(U,V)W = 0, for any vector fields
U,V,W on M?"*1_So from (2.6), we have
RWU,v,W,P) = — % [S(V,W)g(U,P)—-SUW)g(V,P)+ g(V,W)S(U, P)
0

—gU,W)S(V,P)]

~ 2 [g(V, W)g(U, P) = g(U, W)g(V, P)] (3.7)

On substituting U =P =¢;, 1 <i<2n+1 in (3.7), where ¢; is an
orthonormal basis for the tangent space at each point of the manifold. Then

SW,W) =y1g(V, W) + yan(Vin(W) 3.8)
1 1
where y; = o [po — 2rp; — 2np;] and y, = 7 [2p27 — Dol
Also, y; + ¥, = —2n, keeping in mind this fact we obtain from (3.8) that

r=2n(y; — 1) 3.9

In (Dileo & Pastore, 2009), Dileo and Pastore prove that in an almost
Kenmotsu manifold with ¢ belonging to the (x,p)-nullity distribution the
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sectional curvature L(U, £)=-1. Due to this an almost Kenmotsu manifold with
& belonging to the (k, u)-nullity distribution the scalar curvature r = —2n(2n +
1). With the comfort of this value of r get from (3.9) that y;=-2n and y,=0. So
(3.8) reduces to

SV, W) =-=2ng(V,W) (3.10)
In outlook of (3.9) and (3.10), Eq.(3.7) take the form
RUWW = —[g(V, W)U — g(U,W)V] (3.11)

That is, the manifold is locally isometric to the hyperbolic space
H?"*1(—1). Conversely, if (3.11) holds on M2™*1 On contacting (3.11) gives
SV, W) =-=2ng(V,W). Therefore from (2.6) (3.10) and (3.11), we get
B(U,V)W = 0. Thus the theorem is proved. ]

Corollary 3.3 A B-flat almost Kenmotsu manifold M?™*1 with § belonging
to the (x, p)-nullity distribution is an Einstein manifold provided B-curvature

tensor is not the concircular curvature tensor.

. . -1
In particular, if py=a, p=Db, p, = . [naTl + 2b] then B-curvature
tensor reduces to the quasi-conformal curvature tensor. Hence we can attitude

the following

Corollary 3.4 An almost Kenmotsu manifold M?™"*1 along & belonging to
the (x, u)-nullity distribution is quasi-conformally flat if and only if the manifold

is locally isometric to the hyperbolic space H2"*1(—1).
This result also has been proved by De and Majhi (De & Majhi, 2018).

Corollary 3.5 An almost Kenmotsu manifold M?™*1 with & belonging to
the (x, p)-nullity distribution is weyl-conformally flat if and only if the manifold

is locally isometric to the hyperbolic space H2"*1(—1).

Corollary 3.6 An almost Kenmotsu manifold M?"*? with & belonging to
the (x, u)-nullity distribution is conharmonically flat if and only if the manifold

is locally isometric to the hyperbolic space H?"*1(—1).
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Theorem 3.7 An almost Kenmotsu manifold M?™** with € belonging to the
(x, w)-nullity distribution is £-B flat if and only if the manifold is an Einstein

manifold provided B-curvature tensor is not the concircular curvature tensor.

Proof. Let the manifold M2"*1 is £-B flat, that is B(U, V)& = 0. Thus from
(2.6), we have

RU,V)$ = —Z—Z[S(V. U =SW,HV +gV,$HQU — gU,$)QV] —

TLGW.OU-gW. OV (.12

Using (3.2), (3.5) and (3.6) in (3.12) and taking inner product with U, we
get

[g(V,P)n(U) — g(U,P)n(V)]
- —% [—2n0(V)g(U, P) + 2nn(U)g(V, P) + n(V)S(U, P)

—1(U)S(V, P)]
~ 22 [n(gU,P) = )9V, P)] (3.13)
Putting U = £ in (3.13), it yields
SV, P) =r19(V,P) +y2n(V)n(P) (3.14)

where y; = pil[po — 2rp, — 2np1] and y, = p—11[2p2r — Po]. Also we have

y1 + Y2 = —2n, using this fact we have from (3.14) that
r=2n(y; — 1). (3.15)

Where as in an almost Kenmotsu manifold with ¢ belonging to the (x, 1)-
nullity distribution the scalar curvature r = —2n(2n + 1). With the hand of this
rate of r get from (3.15) that y; = —2n and y, = 0. So (3.14) reduces to

S(V,P) = —2ng(V, P). (3.16)

That is, the manifold is an Einstein. Its converse statement is obvious. This

outright the proves. [
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Corollary 3.8 An almost Kenmotsu manifold M2"*1 with & belonging to
the (x,w)-nullity distribution is &-quasi-conformally flat if and only if the
manifold is an Einstein manifold.

This result also proved by De and Majhi (De & Majhi, 2018).

Corollary 3.9 An almost Kenmotsu manifold M2"*1 with & belonging to
the (x, w)-nullity distribution is &-weyl-conformally flat if and only if the
manifold is an Einstein manifold.

Corollary 3.10 An almost Kenmotsu manifold M2"*1 with & belonging to
the (k,p)-nullity distribution is &-conharmonically flat if and only if the
manifold is an Einstein manifold.

Theorem 3.11 An almost Kenmotsu manifold M2"*1 with &belonging to
the (x, w)-nullity distribution is ¢-B flat then the manifold is an Einstein

manifold provided the B-curvature tensor is not the concircular curvature tensor.

Proof. Let the manifold M2"*1 is ¢-B flat, that is, ¢p2(B(¢pU, pV)pW) =
0. Then from (2.6) and (3.3) after that pandemic the inner product with P, we
have

0 = polg(pV, W) g(pU, P) — g(¢U, pW)g($V, P)]
+tp12ng(oV, dW)g(pU, P) — 2ng (U, W) g(¢V, P)
+9(V, pW)S(@U, P) + g(¢X, pW)S(¢V, P)]
—2rp2[g(@V, oW)g(@U, P) — g(U, $)g(¢V, P)] (3.17)

TakingV =W =¢;,1 <i < 2n+ 1in(3.17), where e; is an orthonormal
basis for the tangent space at each point of the manifold. Then

(po+2npy—27Dp7)
S(gU, P) = (FREZELELDN 6 (U, P). (3.18)

Replacing P by ¢P in (3.18) and proving (1.5) and (3.2), we annex

S(U,P) =y19U,P) +ynU)n(P), (3.19)

n(po+2np;—2rp;)
p1(n+1)

n(po+2p1—2rpp+4np1)
p1(n+1)

where y; = andy, = —
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Also we notice that y; + y,=-2n, using this evidence we have from (3.19)
that

r=2n(y; — 1). (3.20)

As well an almost Kenmotsu manifold with & belonging to the (x, p)-nullity
distribution the scalar curvature r = —2n(2n + 1). With the hand of this value
of r get from (3.20) that y; = —2n and y, = 0. So (3.19) reduces to

S(U,P) =-2ng(U,P) (3.21)
This outright the proves. [ ]

Corollary 3.12 An almost Kenmotsu manifold M2"*1 with & belonging to
the (x, u)-nullity distribution is ¢-quasi-conformally flat if and only if the
manifold is an Einstein manifold provided the B-curvature tensor is not the

concircular curvature tensor.

Corollary 3.13 An almost Kenmotsu manifold M?"*1 with § belonging to
the (x, p)-nullity distribution is ¢-weyl-conformally flat if and only if the
manifold is an Einstein manifold provided the B-curvature tensor is not the
concircular curvature tensor.

Corollary 3.14 An almost Kenmotsu manifold M?"*! with § belonging to
the (x,p)-nullity distribution is ¢-conharmonically flat if and only if the
manifold is an Einstein manifold provided the B-curvature tensor is not the

concircular curvature tensor.

4. SEMISYMMETRIC AND RECURRENT PROPERTIES

Here we consider certain curvature properties, thatis, R-B=0,B-¢ =0
and B-¢-recurrent on an almost Kenmotsu manifold with ¢ belonging to the
(x, w)-nullity distribution. With the hand of the above properties first we prove
that

Theorem 4.1 A B-semisymmetric an almost Kenmotsu manifold M2"+1

with & belonging to the (i, u)-nullity distribution is an Einstein manifold

provided the B-curvature tensor is not the concircular curvature tensor.
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Proof. Let the manifold under discussion is B-semisymmetric, that is R -

B = 0. Thus it ensure that

0 = R(¢,P)B(U, V)W — B(R(§, P)U,V)W — B(U,R(¢, P)V)W —
B(U,V)R(¢,P)W (4.1)

An exploit of (3.4) in (4.1), we yield

0=nBWUVWVW)P—-g(P,BU VW) —nU)BP,VIW
+g(P,U)B(, VW

-n(V)B(U,P)W + g(P,V)BU, )W) —n(W)B(U,V)P +
g(P,W)B(U,V)E. (4.2)

Using (2.6) and taking the inner product of (4.2) with respect to £, we have
0 = pon(RU, VIW)N(P) + p1 [SV, W)n(U)n(P) — S(U, W)n(Vin(P)
—2ng(V,W)nU)n(P) + 2ng(U, Wn(VIn(P)] + 2rpz[g(V, W)n(U)n(P)

—gW,W)in(Vn(P)] — gP,BWU,VIW) —nU)n(B(P,VIW)
+g(P,Un(BE, VW)

—n(V)n(BU, PYW) + g(P,V)n(B(U,HW) —n(W)n(B(U,V)P) +
g, Win(B(U,V)S$) (4.3)

In the hand of (2.6),(3.2) and (3.5) in (4.3) and then contracting gives

SW,W) =y1gV,W) + yn(V)n(W) (4.4)

_ r[2@n-1)p,+1)] _ [po—4nrp,y(p1—1)—8n?p;] .
where v = ey M V2T e This
completes the proof. ]

Theorem 4.2 A B-¢)-semisymmetric an almost Kenmotsu manifold M2"+1
with § belonging to the (x,u)-nullity distribution is an n-Einstein manifold

provided the B-curvature tensor is not the concircular curvature tensor.

Proof. Let the manifold M?"*1 is B-¢-semisymmetric, that is B - ¢ = 0.
Then this implies
B(U,V)pW — ¢pB(U,VIW =0 (4.5)
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With the hand of (2.6) and (3.3), we have

B(U, V)W = polg(U, W)V — g(V,pW)U] + p1[S(V, pW)U
— S(U, W)V

+g(V,dpW)QU — g(U, pW)QV] + 2p,r[g(V, pW)U — g(U, pW)V]
(4.6)

and

$BU, VYW =polg(U, W)@V — g(V,W)pU] + p1[S(V, W)U
— S(U, W)V

+g(V, W)PQU — g(U, W)$QV] + 2p,r[g(V, W)U — g(U, W)$V]. (4.7)

Using (4.6) and (4.7) in (4.5) and after taking the inner product with P, we
get

0=po[gU,oW)g(V,P) — g(V,¢W)g(U,P) — g(U, W)g(¢V, P)
+ gV, W)g(¢U, P)]

T[SV, ¢W)g(U, P) = S(U, W) g(V, P) + g(V,pW)S(U, P)

—gWU, eW)S(V,P) = S(V,W)g(¢U,P) + S(U,2Z)g(pV, P)
— gV, W)S(¢U,P) + g(U,W)S(¢V,P)]

+2p,r[g(V, opW)g(U,P) — g(U,pW)g(V,P) — g(V,W)g(¢U, P) +
glu,Wyg(eVv,P)]. (4.8)

Taking V=P =¢;, 1 <i<2n+1 in (4.8), where e; is an orthonormal

basis for the tangent space at each point of the manifold. Then

2p1[S(U, W) = S(pU, W) ] + [2npy — 2(2n— Drp, + 2n+ 1) —
rlg(U, W) = 0. (4.9)

Setting U by ¢U in (4.9) and using(1.5), (3.5), we obtain

SWU,W) =y1g(U,W) +ynU)n(W) (4.10)

where y; = —4%1, Yy = %ﬁpl and a = [2npy — 2rp,(2n — 1) — p1(r —

(2n + 1))]. Hence the theorem is attest next, we show the following result. m
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Theorem 4.3 A B-¢-recurrent an almost Kenmotsu manifold M?"*1 with
& belonging to the (x, u)-nullity distribution with constant scalar curvature is a
B-¢-symmetric manifold provided B-curvature tensor is not conharmonic

curvature tensor.

Proof. Let M?™*1 under consideration is a B-¢)-recurrent manifold then

there exists a non-zero 1-form y such that
¢*((VpB)(U,VIW) = y(P)B(U, V)W (4.11)

for any vector fields U,V,W,P € T,(M). If ¥ (P)=0 then B-¢-recurrent

manifold reduces to the B-¢p-symmetric manifold. Then in view of (1.4) and
(4.11), we have

—(VpB)(U,VIW) +n((VeB)(U,VIW)E = p(P)B(U, V)W (4.12)
Equation (4.12) can be reduces

—g((VpBY)(U,VIW), Q) + n((VpB)(U,VIW)n(Q) =
Y(P)g(BU,VIW,Q) (4.13)

With the hand of (2.6),(3.2) and (3.5), Eq.(4.13) cut down
—Pog (VpR)(U, V)W, Q) = p1[g(VpS)(V, W)U, Q) — g((VeS)(U, W)V, Q)

+g(V,W)(VpS)(U, Q) — g(U,W)(VpS)(V, Q)] — 2p,dr(P)[g(V,W)g(U, Q)
—gUW)gV,Q)]

1(@pog (VeR)(U, VW, E) + p1[g((VpSH(V, W)U, )
—g((VeS)(U, W)V, $) + gV, W)(VpSH(U,$) — gU, W)(VpS)(V,$)]
+2p2dr (P)[g(V, W)g(U,$§) — g(U,W)g(V,$)]
= Y(P)pog(RWU,VIW, Q) + p1[SV,W)g(U, Q) = SWU,W)g(V,Q)

+gV,W)SWU,Q) —gWU,W)S(V, Q)] + 2p.r[g(V,W)g(U, Q) -
giu,w)gv,Q)]. (4.14)

Contracting (4.14) and after simplification we get

2(po — p1)(VpS)(V, W) + dnp,dr(P)g(V, W)
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+n(W)gV, Q) —n(VIn(W)n(W) + 2p,dr(P)[n(U)g(V, W)
—n(V)gU,W)]

=Y(P)[(po — 3p1 — 2np)SV, W) + (p1 + 4np)rg(V,W)].  (4.15)
Substituting V = W = £ in (4.15), we have

4n(2n+1)p,dr(Q)
—2n(po—(2n+3))p1+(2n+1)r(p1+4npz)]

Y(P) = [ (4.16)

If the manifold under consideration is of constant curvature, then dr(Q) =
0. Consequently, we get (P) =0. Therefore from (4.11), we get
P2 ((VPB)(U , V)W) = 0, that is manifold reduces to B-¢-symmetric manifold.

Hence the theorem is justify. . [ ]

Corollary 4.4 A conharmonically ¢-recurrent an almost Kenmotsu
manifold M?"*1 with & belonging to the (k, u)-nullity distribution is always ¢-

symmetric manifold.

S. CURVATURE CONDITIONSB-R=0,B-B =0 AND
B-S=0

Next, we suppose that the manifold satisfying some condition, that is, B -
R=0,B-B=0and B:S =0, where B, R and S are the B-curvature tensor,
the Riemannian curvature tensor and the Ricci tensor respectively. Now, in this
position we show the theorem.

Theorem 5.1 An almost Kenmotsu manifold M2™*1 with & belonging to the
(x, w)-nullity distribution the condition B - R = 0, then the manifold is an
Einstein manifold provided the B-curvature tensor is not the concircular

curvature tensor.
Proof. We consider M2™*1 gatisfies the condition B - R = 0. Then

0 = B(¢,P)R(U, V)W — R(B(€, P)U,V)W — R(U, B(¢, P)V)W —
R(U,V)B(¢,P) (5.1)
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In view of (2.6), (3.2) and (3.5), equation (5.1) can be reduces on taking
w=¢

p1[S(V,P)U — 4ng(U, P)V] = 4rp,[g(U, P)V +n(U)n(P)V] = 0. (5.2)
Now taking the inner product of (5.2) with Q, we obtain

0=p.[SV,P)g(U,Q) —4nS(U,P)g(V,Q)] — 4rp2[g(U,P)g(V,Q) +
nWnP)gv,)]- (5.3)

Taking U =P =¢;, 1 <i <2n+1in (5.3), where e; is an orthonormal
basis for the tangent space at each point of the manifold, we have

SW,Q) = 4r{n+ Zpilz(n +D} g, Q). (5.4)

This achieve the proof. . [

M2n+1

Theorem 5.2 An almost Kenmotsu manifold with & belonging to the

(%, uw)-nullity distribution satisfying the condition B - B = 0, then the manifold

is provided the B-curvature tensor is not the concircular curvature tensor.
Proof. Let M?™*1 satisfying the condition B - B = 0, which implies

0=B(, P)B(U,V)§ —B(B(,P)U,V)E —B(U,B(S, P)V)E —
B(U,V)B(E,P)E. (5.5)

Applying (2.6), (3.2), (3.5) in (5.5) and then taking the inner product with &

and at U = &, we obtain

(Po + 2npy — 2rp2)[QP — y1P — y,m(P)E] = 0 (5.6)

which implies that either p, = 2(rp, —np;) or QP =y, P + y,n(P)§,

1
where y; = o [2np; + 4p,(r + 1)), v, = [po + 6np;1 + 21p,] . [}

1
D1
Finally, we show that

Theorem 5.3 An almost Kenmotsu manifold M2™*1 with & belonging to the
(x, w)-nullity distribution the curvature condition B - S = 0, if and only if the

manifold is an Einstein manifold.
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Proof. Let the condition B -S = 0 holds on M?"*1 which implies that
(B(U,V)-S)(W,P) = 0, for all vector fields U, V, W, P. Then we have

S(B(U, V)W, P) + S(W,B(U,V)P) = 0 (5.7)

for any vector fields U, V, W, P on M?™*1_Substituting U=W=¢ in (5.7) we

have
S(B(,V)S,P)+S(&,B(S,V)P) =0 (5.8)
By the use of (2.6), (3.4), (3.5) and (3.6) we get from (5.8) that

S(V,P) =v1g(V,P) (5.9)

anrp,

—4n?p,-2n . . . . .
P17"Po Thys the manifold is an Einstein manifold.
Pot+2(np1—1D2)

Conversely, if the manifold under consideration is an Einstein manifold, then
from (5.7) it follows that B - § = 0 holds identically. This execute the proof of

where y; =

the theorem. u

6. & LINKED WITH (x, u)'-NULLITY DISTRIBUTION

This section is related to if U € D be the eigen vector of h’ corresponding
to the eigen value A. Then from (2.5) it is light that A2 = —(k + 1), a constant.
Hence k < 1 and A = +v/—k + 1. We indicate the eigen spaces associated with
h' by [1]" and [—A] corresponding to the non-zero eigen values [A] and [—1] of

h' respectively. Thus we recall some results.

Lemma 6.1 (Wang & Lui, 2015). Let (M?"*1,¢,&,1,9) be an almost
Kenmotsu manifold with & belonging to the (k, u)'-nullity distribution. If h" #
0, then the Ricci operator Q of M2™*1 is given by

Q = —2nid +2n(k + 1)n Q & — 2nh’ (6.1)
In addition, the scalar curvature of M?™*1 is 2n(k — 2n).
Also in an almost Kenmotsu manifold with & belonging to the (k, u)'-nullity

distribution, we carry
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R, V)§ = k[n(V)U —n(U)V] + uln(VIR'U —n(U)R'V] (6.2)
R, U)V = k[g(U,V)§ —n(V)U] + ulg(R'U,V)§ —n(V)R'U] (6.3)
SV, &) = 2nkn(V). (6.4)
Now we show the following result.

Theorem 6.2 A (2n + 1)-dimensional (n > 1) B-flat almost Kenmotsu
manifold with & belonging to the (x,p) -nullity distribution is either

conharmonically flat or of a quasi-constant curvature.

Proof. RV, W,P) = =2[S(V,W)g(U,P) = SU,W)g(V, P) +
gV, w)s,P) — g(U,W)S(V,P)]

— 229 (v, W)g(U, P) = g(U,W)g(V, P)]. (6.5)

Taking V. =W = £ in (6.5), using (6.2) and (6.4) we get after simplifying

S(U,P) = y19(U, P) + yan(Un(V) = = g(W'U, P) (6.6)
where y; = —[M+2rﬁ + 2nk], and y, = [M+2rﬂ + 4nk]. It is
P1 D1 D1 D1
noticed that
y1+ v, =2nk (6.7)

With the hand of (6.6) and (6.7), we obtain

Y=k (6.8)
This complete the prove. ]

7. EXTENDED B-CURVATURE TENSOR OF AN ALMOST
KENMOTSU MANIFOLD WITH (k, u)- NULLITY
DISTRIBUTION

This section concern with the light of vanishing extended B-curvature tensor

and extended ¢-B-flat almost Kenmotsu manifolds with ¢ belonging to the
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(x, u)-nullity distribution. The extended form of generalized B-curvature tensor
can be designate as

B,(U, V)W = poR(U, VIW + p[S(V, W)U — S(U, W)V + g(V,W)QU
—g(U,W)QV]

+2p,r[g(V, WU — g(U,W)V] —n(U)BE VW —n(V)BU,HW —
nW)B(U,V)¢ (7.1)

Now we came to the following result.

Theorem 7.1 In an almost Kenmotsu manifold M2"*1 with € belonging to
the (x, u)-nullity distribution, if the extended B-curvature tensor vanishes then
the manifold is n-Einstein provide the B-curvature tensor is not the concircular
curvature tensor.

Proof. Let B,(U,V)W = 0 holds on M2"*1 So adopting V = W = &, we
get from (7.1) that

R(U,$)¢ = —%[5(5. U = SWU,$$ +g(&,$)QU — g(U,§)E¢]

~ZP (&, U ~ g(U,)E] + - W)BE OE +n(OBU, O +
n(§)BU,$)¢] (7.2)

Now, making the use of (3.2), (3.5) and (3.6) the equation (7.2) reflect as

2B(U,§)¢ = —[po + 2npy — 2rp2)U + [po + 4npy — 2rp,In(U)E +
p1QU (7.3)

On the other-hand in view of (2.6),(3.2),(3.5) and (3.6) we obtain

U, 8)¢ = —[p, + 2np; — 2rp,]U + [po + 4np; — 2rp,In(U)E + p,QU. (7.4)

With the help of (7.3) and (7.4), we get

QU =y1U +y2n(U)¢ (7.5)
where y; = pi [2npy + 2p,(r + 1)], and y, = —pi [po + 4np1 + 21p,].
1 1
This shows that the manifold is n-Einstein. Hence the theorem is proved. ]
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At last we show the subsequent result.

Theorem 7.2 An almost Kenmotsu manifold M2™*1 with & belonging to the
(x, w)-nullity distribution is extended £-B flat then the manifold is n-Einstein

provide the B-curvature tensor is not the concircular curvature tensor.

Proof. Let the condition B, (X, Y)& = 0 holds on M?"*1_ So from (7.1), we

have

RU,V)$ = —%[S(V. U =SW,HV +g(V,$)QU — g(U,§)QV]

2rp,

[g(V,$HU — g(U, V]

+ - [NW)IB(E,VIE +n(V)BW, §)E +n(E)BU,V)E] (7.6)
Taking V = £ in (7.6) and using (3.2),(3.5) and (3.6) then (7.6) reduces to

2B(U,8)¢ = [—po — 2npy + 21p2]U + [po + 4npy — 210, In(U)E +
p1QU. (7.7)

On the other-hand in view of (2.6),(3.2),(3.5) and (3.6) we obtain

B(U,§)¢ = —[p, + 2np; — 2rp,|U + [po + 4np, — 2rp,In(U)¢ + p,QU. (7.8)

With the help of (7.7) and (7.8), we get
QU = y1U +yan(U)§ (7.9)

where y; = 10—11[271}9_1L +2p,(r+1)], and 7y, = [po + 4np, +

1

D1
2rp,].This implies that the manifold is an n-Einstein. Hence the theorem is
established. u

8. CONCLUSION

In 2014, Shaikh and Kundu (Shaikh & Kundu, 2014) to imported and
studied a type of tensor field, called generalized B curvature tensor on a
Riemannian manifold. It counts the structures of quasi-conformal, Weyl-
conformal, conharmonic and concircular curvature tensors. In this consequences
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we study certain courvature condition on such curvature on almost Kenmotsu
manifolds with its characteristic vector field & belongs to the (k, u)-nullity and
(k, w)'-nullity distribution respectively. The object of the paper is to study
almost Kenmotsu manifolds with its characteristic vector field & belongs to the
(k, w)-nullity and (k, u)'-nullity distribution respectively. Also we deal with
conditions B.R, B.B and B.S in an almost Kenmotsu manifold. As a

consequence of the main results we obtain some corollaries.
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