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Chapter 1 

 
SEMISIMPLE NORMAL INJECTIVE KRASNER 

HYPERMODULES 
Prof. Dr. Burcu NİŞANCI TÜRKMEN 

Department of Mathematics, Amasya University 

 

1. INTRODUCTION 

Algebraic hyperstructures put forth a natural generalization of classical 
algebraic structures, and in 1934 they were introduced by Marty (Marty, 
1934:45-49) at the eighth Congress of Scandinavian mathematicians where he 
generalizes the concept of group to the concept of hypergroup. A hypergroup, a 
non-empty set equipped with relational hyperprocessing and reproductive 
hyperprocessing. In a group, the composition of two elements is an element, 
whereas in a hypergroup the composition of two elements is an element, a non-
empty set. Since then, from a theoretical point of view, many different types of 
hyperstructures (hyperring, hypermodule, hypervector space,...) and applications 
of pure and applied mathematics to many subjects (Corsini,1993; Corsini & 
Fotea,2003; Davvaz, 2012; Davvaz & Fotea,2007; Vougiouklis,1994). There are 
different hyperrings in the literature. A special case of this species is the 
introduced hyperring by Krasner (Krasner,1983:307-312). Furthermore, Krasner 
introduced a new class of hyperrings and hyperfields: the quotient (factor) 
hyperrings and hyperfields. 

The rest of this section is arranged as follows: we remind some basic 
knowledge of definitions related to the hyperstructures used throughout the 
article. We define semisimple normal injective Krasner hypermodules. We also 
investigate some properties of such hypermodules and prove that there is 
semisimple normal injective Krasner hypermodules have properties similar to 
those of strongly injective modules (Türkmen & Nişancı Türkmen, 2021:1-7). 
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2. BASIC DEFINITIONS IN THEORY OF 
HYPERMODULES 

We give some fundamental definitions of hyperstructures used 
(Davvaz,2012; Davvaz & Fotea,2007) in this book chapter. Let 𝑋 be a non-
empty set. Then, a mapping ∘: 𝑋 × 	𝑋 ⟶ 𝑃∗(𝑋) is called a “binary 
hyperoperation” on 𝑋, where 𝑃∗(𝑋) is the family of all non-empty subsets of 𝑋. 
The couple (𝑋,∘) is called “hypergroupoid”. In this definition, if 𝑈 and 𝑉 are 
non-empty subsets of 𝑋 and 𝑥 ∈ 𝑋, then we define 𝑈 ∘ 𝑉 = ⋃ 𝑢 ∘ 𝑣4∈5,6∈7 , 𝑥 ∘
𝑈 = {𝑥} ∘ 𝑈 and 

𝑈 ∘ 𝑥 = 𝑈 ∘ {𝑥} 

A hypergroupoid (𝑋,∘) is called a “semihypergroup”, if for every 𝑥, 𝑦, 𝑧 ∈
𝑋, we have 𝑥 ∘ (𝑦 ∘ 𝑧) = (𝑥 ∘ 𝑦) ∘ 𝑧 ; a “quasihypergroup” if for every 𝑥 ∈ 𝑋, 

𝑥 ∘ 𝑋 = 𝑋 = 𝑋 ∘ 𝑥 

a “hypergroup” if it is semihypergroup and a quasihypergroup; a 
“commutative hypergroup” if the hyperoperation ∘ is commutative on the set of 
𝑋. A “Krasner hyperring” is an algebraic structure (𝑅,+, . ) which satisfies the 
following conditions: 

1. (𝑅,+) is a commutative hypergroup, 

2. there is a 0 ∈ 𝑅 such that 0 + 𝑥 = {𝑥} for every 𝑥 ∈ 𝑅, 

3. there is a unique 𝑥@ ∈ 	𝑅 such that 0 ∈ 𝑥 + 𝑥@ (𝑥@	 is denoted by −𝑥) for 
every 𝑥 ∈ 𝑅, 

4. 𝑧 ∈ 𝑥 + 𝑦 implies that 𝑦 ∈ −𝑥 + 𝑧 and 𝑥 ∈ 𝑧 − 𝑦, 

5. (𝑅, . ) is a semigroup which has zero as a bilaterally absorbing element, 
i.e. 𝑥. 0 = 0. 𝑥 = 0.  

6. the multiplication hyperoperation “.” is distributive with respect to the 
hyperoperation “+”. 

By the definition, it is clearly seen that every ring is a Krasner hyperring. 
For the basic example of Krasner hyperring, we refer to the reader (Davvaz, 
2013). 

Let (𝑅,+, . ) be a Krasner hyperring and 𝑆 be a non-empty subset of 𝑅. Then 
𝑆 is called a “subhyperring” of 𝑅 if (𝑠, +, . ) is itself a hyperring. A subhyperring 
𝑆 of a Krasner hyperring (𝑅,+, . ) is a “hyperideal” of 𝑅 if 
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𝑟. 𝑎 ∈ 𝑆 

and 𝑎. 𝑟 ∈ 𝑆 for every 𝑎 ∈ 𝑆, 𝑟 ∈ 𝑅. A commutative Krasner hyperring 
(𝑅,+, . ) with identity element “1” is a “Krasner hyperfield” if (𝑅 ∖ {0}, . ) is a 
group. Let (𝑀,+) be a hypergroup and (𝑅,+, . ) be a hyperring. According to 
(Vougiouklis,1994) 𝑀 is called a “left hypermodule over 𝑅” if there exists	∶
𝑅 × 𝑀 ⟶ 𝑃∗(𝑀); (𝑎,𝑚) ⟼ 𝑎.𝑚 such that for every 𝑎, 𝑏 ∈ 𝑅 and 𝑚,𝑚L,𝑚M ∈
𝑀, we have: 

1. 𝑎. (𝑚L +𝑚M) = 𝑎.𝑚L + 𝑎.𝑚M	, 

2. (𝑎 + 𝑏).𝑚 = (𝑎.𝑚) + (𝑏.𝑚)	, 

3. (𝑎. 𝑏).𝑚 = 𝑎. (𝑏.𝑚) . 

If 𝑅 is a Krasner hyperring and (𝑀,+) is a canonical hypergroup which 
satisfies the above conditions taking an external operation ⋅∶ 𝑅 × 𝑀 ⟶ 𝑀 by 
(𝑟,𝑚) ⟼ 𝑟.𝑚 ∈ 𝑀, and 𝑟. 0 = 0, then 𝑀 is called a “left Krasner 𝑅-
hypermodule”. A left Krasner hypermodule 𝑀 over 𝑅 is called “unitary” if 
1P. 𝑎 = 𝑎 for every 𝑎 ∈ 𝑀. In terms of convenience, by “an 𝑅-hypermodule” we 
mean an unitary left Krasner 𝑅-hypermodule. A non-empty subset 𝑁 of an             
𝑅-hypermodule 𝑀 is said an “𝑅-subhypermodule” of 𝑀 denoted by 𝑁 ≤ 𝑀 if 𝑁 
is an 𝑅-hypermodule itself. If 𝑁 ⊂ 𝑀 and 𝑁 is a subhypermodule of 𝑀, 𝑁 is 
called a “proper subhypermodule” of 𝑀. It is easy to prove that a non-empty 
subset 𝑁 of an 𝑅-hypermodule 𝑀 if for every 𝑥, 𝑦 ∈ 𝑁 and every 𝑟 ∈ 𝑅, 𝑥 − 𝑦 ⊆
𝑁 and 𝑟. 𝑥 ∈ 𝑁 The subset 𝑅𝑎 = {	𝑟𝑎	|	𝑟 ∈ 𝑅	} ≤ 𝑁 for every element 𝑎 of an 
𝑅-hypermodule 𝑁. If 𝑁 ≤ 𝑀, 𝑀 is called an “extension” of 𝑁. Let 𝑀 and 𝑁 be 
𝑅-hypermodules. A function 𝑓:𝑀 ⟶ 𝑁 that satisfies the conditions.  

1. 𝑓(𝑚L +𝑚M) = 𝑓(𝑚L) + 𝑓(𝑚M), 

2. 𝑓(𝑟𝑚) = 𝑟𝑓(𝑚) 

for every 𝑟 ∈ 𝑅, and every 𝑚,𝑚L,𝑚M ∈ 𝑀, is said to be a “strong                         
𝑅-homomorphism” from 𝑀 into 𝑁. If 𝑁 is an 𝑅-hypermodule and 𝑓:𝑀 ⟶ 𝑁 is 
a strong 𝑅-homomorphism, ker(𝑓) = {	𝑚 ∈ 𝑀		|		𝑓(𝑚) = 0Z		}. Moreover 

𝐼𝑚(𝑓) = {	𝑛 ∈ 𝑁	|	∃	𝑚 ∈ 𝑀 ∶ 		𝑛 ∈ 𝑓(𝑚)	} 

Let 𝑀 be a hypermodule over a hyperring 𝑅 and 𝑁 be a subhypermodule of 

𝑀. Consider the set ^
Z
= {𝑚 + 𝑁	|		𝑚 ∈ 𝑀}, then ^

Z
 is a hypermodule over 𝑅 
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under hyperoperation is defined as +:	^
Z
×	^

Z
	⟶	𝑃∗(^

Z
) and ∙∶ 𝑅 ×	^

Z
⟶	^

Z
 

such that (𝑚L + 𝑁) + (𝑚M + 𝑁) = {𝑎 + 𝑁	|	𝑎 ∈ 	𝑚L +𝑚M} and 𝑟. (𝑚 + 𝑁) =

𝑟.𝑚 + 𝑁 for every 𝑚,𝑚L,𝑚M ∈ 𝑀 and 𝑟 ∈ 𝑅. The set ^
Z

  that satisfies the above 

conditions is called a “quotient (factor) hypermodule” according to 𝑁 
subhypermodule of 𝑀. Note that 𝑚+𝑁 = 𝑁 if and only if 𝑚 ∈ 𝑀. In (Mahjoob 
& Ghaffari, 2018:554-568), a non-zero 𝑅-hypermodule 𝑀 is called “simple”, if 
the only subhypermodules of 𝑀 are {0} and 𝑀. We denote by 𝑆(𝑀), the set of 
all simple subhypermodules of an 𝑅-hypermodule 𝑀. Let 𝑀L and 𝑀M be 
subhypermodules of 𝑅-hypermodule 𝑀. Then 𝑀 is called “independent”, if 
	𝑀L ∩ 𝑀M = {0}. If 𝑀L and 𝑀M are independent, then 𝑀L +𝑀M is denoted by 
𝑀L⨁𝑀M. Also, a subhypermodule 𝑁 of 𝑀 is called a “direct summand” of 𝑀, 
if 𝑀 = 𝑁⨁𝐾, for some subhypermodule 𝐾 of 𝑀 by (Talaee,2013:5-14). Let 𝑀 
be an 𝑅-hypermodule. 𝑀 is called “semisimple”, if for every subhypermodule 𝐾 
of 𝑀, there exists a subhypermodule 𝑁 of 𝑀 such that 𝑀 = 𝐾⨁𝑁 (Mahjoob & 
Ghaffari, 2018: 554-568). Let 𝑀 be a hypermodule and 𝒳 = d𝐾e	f	𝑗 ∈ 𝐽i be a set 

of subhypermodules of 𝑀 for any index set. The hypermodule 𝑀 has “the 
commutative property for sums (CPS) on 𝒳” if for every subset 𝐼 of 𝐽, if 
∑ 𝐾k = ∑ 𝐾ll∈mk∈n  where 𝜃 is a permutation of 𝐼. If 𝑀 is a Krasner                                
𝑅-hypermodule then 𝑀 satisfies the condition CPS on the set of its all 
subhypermodules in (Hamzekolaee et al.,2021:131-145) as the sum of all small 
subhypermodules of 𝑀, i.e. 𝑅𝑎𝑑(𝑀) = ∑ 𝐿r≪^ . If 𝑀 has no small 
subhypermodules of 𝑀, then 𝑅𝑎𝑑(𝑀) = 𝑀. 

Let 𝑀 be a hypermodule. In (Hamzekolaee et al.,2021:131-145), a proper 
subhypermodule 𝑁 of 𝑀 is called “small” in 𝑀, denoted by 𝑁 ≪ 𝑀, if 

𝑀 ≠ 𝑁 + 𝐿 

for every proper subhypermodule 𝐿 of 𝑀. For these subhypermodules 𝑈 and 
𝑉 of 𝑀, 𝑉 is called a “supplement ” of 𝑈 in 𝑀 if 𝑀 = 𝑈 + 𝑉 and 𝑈 ∩ 	𝑉 ≪ 𝑉 

i.e. the canonical mapping 𝑉 ⟶ ^
5

  is a small strong epimorphism. A 

subhypermodule 𝑈 of 𝑀 has “ample supplements” in 𝑀, if, whenever 𝑈 + 𝑉 =
𝑀, 𝑉 contains a supplement 𝑉@ of 𝑈 in 𝑀. Since every direct summand is a 
supplement subhypermodule. 
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3. SOME RESULTS ON SEMISIMPLE NORMAL 
INJECTIVE KRASNER HYPERMODULES 

In (Ameri & Shojaei, 2020), the basic features of injective modules have 
been transferred to hypermodules as normal injective. An 𝑅-hypermodule 𝑀 is 
called “normal injective” if for every strong monomorphism 𝑔 ∈ 𝐻𝑜𝑚P(𝐴, 𝐵) 
and every strong homomorhism 𝑓 ∈ 𝐻𝑜𝑚P(𝐴,𝑀), there exists 𝑓̅ ∈
𝐻𝑜𝑚P(𝐵,𝑀) such that 𝑓̅ ∘ 𝑔 = 𝑓. In addition, the Baer criterion used in module 
theory is defined by moving to hypermodules as Baerian injective in (Ameri & 
Shojaei, 2020). Inspired by (Zöschinger,1974:267-287), we can easily define a 
hypermodule 𝑀 with properties (E) and (EE). Through the rest of this section, 
we focus on the notion of semisimple normal injective hypermodules and the 
unitary left Krasner 𝑅-hypermodule over a Krasner hyperring 𝑅 will be studied 
wherever the concept of Krasner hypermodule is written. 

Definition 3.1 (a) Let 𝑀 be a Krasner hypermodule. We call 𝑀 “semisimple 
normal injective” if whenever 𝑀 + 𝐿 = 𝑁 with 𝑀 ≤ 𝑁, there exists a 
subhypermodule 𝐿@ of 𝐿 such that 𝑀⊕𝐿@ = 𝑁. It is easily proven that every 
semisimple normal injective hypermodule is normal injective. 

(b) Let 𝑀  be a Krasner hypermodule.  We call a hypermodule  𝑀 has “the  

property (E)” if 𝑀 has a supplement in every extension 𝑁 as a proper 
generalization of normal injective hypermodules, and a hypermodule 𝑀 has “the 
property (EE)” if 𝑀 has ample supplements in every extension 𝑁. 

Recall from (Bordbar et al., 2020:1-19) that a hypermodule 𝑀 is called 
“Artinian” if it satisfies the descending chain condition on subhypermodules of 
𝑀 for every descending chain of subhypermodules 𝑀L ⊇ 𝑀M ⊇ 𝑀} ⊇ ⋯ there 
exists 𝑁 ∈ ℕ such that 𝑀� = 𝑀Z, for every natural number 𝑛 ≥ 𝑁, this is 
equivalent condition with every descending chain of subhypermodules has a 
minimal element.  

By the Definition 3.1(b), the following lemma is obtained clearly using 
(Zöschinger,1974: Lemma1.2).         

Lemma 3.2 Let 𝑀 be a Krasner hypermodule. Then every subhypermodule 
of 𝑀 has the property (E) if and only if 𝑀 has the property (EE). 



 

 6 

Lectures of Pure Mathematics on Algebra, Analysis and Geometry 

Recall from (Ameri & Shojaei, 2020) that an 𝑅-hypermodule 𝑃 is “normal 
projective” if for every strong epimorphism 𝑔 ∈ 	𝐻𝑜𝑚P(𝐴, 𝐵) and every strong 
homomorphism 𝑓 ∈ 𝐻𝑜𝑚P(𝑃, 𝐵), there exists 𝑓̅ ∈ 𝐻𝑜𝑚P(𝑃, 𝐴) such that 

𝑔 ∘ 𝑓̅ = 𝑓 

If 𝑓: 𝑃 ⟶ 𝑀 be a small strong epimorphism and 𝑃 is projective                             
𝑅-hypermodule, 𝑃 is called a “projective cover” of 𝑀. 

 Definition 3.3 Let 𝑅 be a Krasner hyperring. 𝑅 is called “left perfect” if 
every left Krasner 𝑅-hypermodule has a projective cover. If every simple                                     
𝑅-hypermodule is normal injective, the Krasner hyperring 𝑅 is called “left              
V-hyperring”. 

 In the next Corollary, we will characterize properties (E) and (EE) in 
Krasner hypermodules in Krasner hyperrings.  

Corollary 3.4 The following statements are equivalent for a Krasner 
hyperring 𝑅. 

1. 𝑅 is left perfect. 

2. Every left Krasner 𝑅-hypermodule has the property (E). 

3. Every left Krasner 𝑅-hypermodule has the property (EE). 

Proof. Clear by Lemma 3.2 and (Clark et al., 2006).                                            ∎ 

In the following Example, we give an example for a Krasner hypermodule 
which has the property (E) but not normal injective. 

Example 3.5 Let 𝑅 be the Krasner hyperring ℤ
�ℤ

 for 𝑛 > 1 and the 

hypermodule 𝑀 = 𝑅P . Since 𝑅 is an artinian hyperring, 𝑀 has the property (E) 
by Corollary 3.4. But 𝑀 is not normal injective. 

The following Theorem is an answer to the question: “Whose hypermodule 
classifications of left Krasner V-hyperring?” 

Theorem 3.6 Let 𝑅 be a Krasner hyperring. Then the following statements 
are equivalent. 

1. Every Krasner 𝑅-hypermodule with the property (EE) is semisimple 
normal injective. 

2. Every Artinian Krasner 𝑅-hypermodule is semisimple normal injective. 

3. 𝑅 is a left Krasner 𝑉-hyperring. 



 

 7 

Lectures of Pure Mathematics on Algebra, Analysis and Geometry 

Proof. (1)⟹(2) Clear as artinian hypermodules satisfy the property (EE). 

(2)⟹(3) Let 𝑀 be a simple Krasner 𝑅-hypermodule. By the hypothesis, 𝑀 
is (semisimple) normal injective. Thus 𝑅 is a Krasner left 𝑉-hyperring.  

(3)⟹(1) Let 𝑀 be a hypermodule with the property (EE) and 𝑁 be an 
extension of 𝑀. So there exists a subhypermodule 𝐿 of 𝑁 such that 𝑁 = 𝑀 + 𝐿. 
Since 𝑀 has the property (EE), there exists a subhypermodule 𝐿@ of 𝐿 such that 
𝑁 = 𝑀 + 𝐿@ and 𝑀 ∩ 𝐿@ ≪ 𝐿@. Thus, 𝑀 ∩ 𝐿@ ⊆ 𝑅𝑎𝑑(𝐿@) = {0}. Therefore 𝑀 is 
semisimple normal injective.                                                                                      ∎ 

Now also the following property of semisimple normal injective Krasner 
hypermodules which is easily proven: 

Lemma 3.7 The class of semisimple normal injective Krasner 
hypermodules is closed under strong isomorphism. 

Proof. Let  𝑓:𝑀 ⟶ 𝐾 be a strong isomorphism and 𝐾 ≤ 𝑁. Suppose that 
𝑀 is a semisimple normal injective Krasner hypermodule. Consider the 
following diagram in Table 1: 

 

Table 1 

 

				𝑀
									��											
�⎯⎯⎯⎯⎯⎯⎯� 𝑁 

 

													𝑓�L																		𝐼Z 

				𝐾
									�												
�⎯⎯⎯⎯⎯⎯� 	𝑁 

 

where 𝚤: 𝐾 ⟶ 𝑁 is the inclusion mapping. Since 𝚤𝑓:𝑀 ⟶ 𝑁 is a strong 
monomorphism, 𝑀 is a subhypermodule of 𝑁. Let 𝑁 = 𝐾 + 𝐿 for some 
subhypermodule of L≤ 𝑁. Then, 

𝑁 = 𝐼Z(𝑁) = 𝐼Z(𝐾 + 𝐿) = 𝐼Z(𝐾) + 𝐼Z(𝐿) = (𝐼Z𝚤)(𝐾) + 𝐿
= (𝚤𝑓)�𝑓�L(𝐾)� + 𝐿 = (𝚤𝑓)(𝑀) + 𝐿 = (𝚤𝑓)(𝑀)⨁𝐿@ 

with 𝐿@ ≤ 𝐿 since 𝑀 is semisimple normal injective. Therefore 𝑁 = 𝐾⨁𝐿@. 
So 𝐾 is semisimple normal injective.                                                                                   ∎ 
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We give this result as a consequence of Lemma 3.7. 

Theorem 3.8 Let 𝑀 be a Krasner hypermodule. Then the following 
statements are equivalent. 

1. 𝑀 is semisimple normal injective.  

2. Every subhypermodule of 𝑀 is normal injective. 

Proof. (𝟏) ⟹ (𝟐) Let 𝑈 ≤ 𝑀 and 𝑁 be any extension of 𝑈. Let 𝑊 = 7
�
 , 

where the subhypermodule 𝑆 = {(𝑖L(𝑢), 𝑖M(𝑢))|	𝑢 ∈ 𝑈} ≤ 𝑉 for these 
inclusions strong homomorphisms 𝑖L: 𝑈 ⟶ 𝑀 and 𝑖M: 𝑈 ⟶ 𝑁 for the external 
direct product 𝑉 of 𝑀 and 𝑁. Then consider strong monomorphisms 𝑓:𝑀 ⟶𝑊, 
𝑓(𝑚) = (𝑚, 0) + 𝑆 and 𝑔:𝑁 ⟶𝑊, 𝑔(𝑛) = (0, 𝑛) + 𝑆 for every 𝑚 ∈ 𝑀, 𝑛 ∈
𝑁. If (𝑚, 𝑛) + 𝑆 ∈ 𝑊, then (𝑚, 𝑛) + 𝑆 ∈ 𝑊, then 

(𝑚, 𝑛) + 𝑆 = �(𝑚, 0) + 𝑆� + �(0, 𝑛) + 𝑆� = 𝑓(𝑚) + 𝑔(𝑛) 

So 𝑊 = 𝐼𝑚(𝑓) + 𝐼𝑚(𝑔). Since 𝑓𝑖L = 𝑔𝑖M, we obtain the following pushout 
diagram in Table 2: 

 

Table 2 

 

				𝑈
									k�											�⎯⎯⎯⎯⎯⎯⎯� 𝑁 

 

𝑖L												𝑔 

					𝑀
									�												
�⎯⎯⎯⎯⎯⎯�𝑊 

 

Here, 𝑀 is strong isomorphic to 𝐼𝑚(𝑓). By the assumption 𝑀 is                  
semisimple normal injective by Lemma 3.7. Therefore, we have the 
decomposition 𝑊 = 𝐼𝑚(𝑓)⨁𝐿 for some subhypermodule 𝐿 of 𝐼𝑚(𝑔). Now                                        
𝐿 = 𝑔�L(𝑊) = 𝑔�L(𝐼𝑚(𝑓)⨁𝐿) = 𝑈 + 𝑔�L(𝐿).  Let 𝑥 ∈ 𝑈 ∩ 𝑔�L(𝐿). Then 
𝑥 = 0, as 𝑔 is a strong monomorphism. Thus 𝑈 ∩ 𝑔�L(𝐿) = {0}. Hence 𝑈 is 
normal injective.  
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(𝟐) ⟹ (𝟏) For any extension 𝑁 of 𝑀, let 𝑁 = 𝑀 + 𝑇 for some 
subhypermodule 𝑇 of 𝑁. By the hypothesis, 𝑀 ∩ 𝑇 is normal injective and so 
there exists a subhypermodule 𝑇@ of 𝑇 such that (𝑀 ∩ 𝑇)⨁𝑇@ = 𝑇. We have 

𝑁 = 𝑀 + 𝑇 = 𝑀 + �(𝑀 ∩ 𝑇) + 𝑇@� = 𝑀 + 𝑇@ 

Since (𝑀 ∩ 𝑇) ∩ 𝑇@ = {0} and 𝑇@ ≤ 𝑇, then 𝑀 ∩ 𝑇@ = {0}. So 𝑁 = 𝑀⨁𝑇@. 
Thus 𝑀 is semisimple normal injective.                                                                   ∎ 

There exists a normal injective Krasner hypermodule which is not 
semisimple normal injective: 

Example 3.9 Let 𝑀 = ℚℤ . Then 𝑀 is a normal injective Krasner 
hypermodule but not semisimple normal injective. 

Therefore we can give the following corollary: 

Corollary 3.10 If 𝑀 is a semisimple normal injective Krasner hypermodule, 
then 𝑅𝑎𝑑(𝑀) = {0}.  

For the following proposition we refer to (Wisbauer, 1991). The proof is 
included for completeness. 

Proposition 3.11 Let 𝑅 be a Krasner hyperring. Then the following 
statements are equivalent. 

1. The left 𝑅-hypermodule 𝑅 is a semisimple Krasner hypermodule. 

2. Every Krasner 𝑅-hypermodule is normal injective. 

3. Every Krasner 𝑅-hypermodule is semisimple normal injective. 

Proof. (1)⟺(2) It is similarly proven by (Wisbauer,1991). 

(2)⟹ (𝟑) Let 𝑀 be a Krasner 𝑅-hypermodule. By the hypothesis, every 
subhypermodule of 𝑀 is normal injective. By Theorem 3.8, 𝑀 is semisimple 
normal injective. 

(3)⟹(2) Clear.                                                                                                          ∎ 

By using “Theorem 3.8”, we obtain the following main result: 

Lemma 3.12 Let 𝑀 be a simple Krasner hypermodule. 𝑀 is normal injective 
if and only if it is semisimple normal injective.  

In the light of Lemma 3.12 we have the following corollary: 

Corollary 3.13 Let 𝑅 be a Krasner hyperring. Then the following statements 
are equivalent. 
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1. 𝑅 is a left V-hyperring. 

2. Every simple Krasner 𝑅-hypermodule is semisimple normal injective. 

We now prove a related result. 

Theorem 3.14 The class of semisimple normal injective Krasner 
hypermodules is closed under subhypermodules and factor hypermodules. 

Proof. Let 𝑀 be a semisimple normal injective Krasner hypermodule and 

𝑈 ≤ 𝑉 ≤ 𝑀. 

It follows from Theorem 3.8 that 𝑈 is normal injective. Again applying 
Theorem 3.8, we have that 𝑉 is semisimple normal injective. In addition, since 

every factor hypermodule  ^
7

 of 𝑀 is a direct summand of 𝑀, any factor 

hypermodule  ^
7

  of 𝑀 is semisimple normal injective.                                                ∎ 

On the other hand, we have: 

Theorem 3.15 Let 0 ⟶ 𝑀L
						�				
�⎯⎯� 𝑀

						�				
�⎯⎯�𝑀M ⟶ 0 be a short exact 

sequence for Krasner hypermodules which consists of strong homomorphisms. 
Then the following statements are equivalent. 

1. 𝑀 is semisimple normal injective. 

2. 𝑀L and 𝑀M are semisimple normal injective. 

Proof. Since the following exact sequences for Krasner hypermodules 

0 ⟶ 𝑀L
						�				
�⎯⎯� 𝑀

						�				
�⎯⎯� 𝑀M ⟶ 0 

and 

0 ⟶ 𝐼𝑚(𝑓)
						k				
�⎯⎯� 𝑀

						�				
�⎯⎯�

𝑀
𝐼𝑚(𝑓)

⟶ 0 

where 𝑖 is the inclusion mapping (strong monomorphism) and 𝜋 is the 
canonical strong epimorphism. Take the hypermodule 𝑀L as a subhypermodule 

of 𝑀 and 𝑀M is strong isomorphic to ^
^�

 loss of generality. 

(𝟏) ⟹ (𝟐) By Theorem 3.14, obvious. 

(𝟐) ⟹ (𝟏) By using the hypothesis, we take that 𝑀L and ^
^�

 are semisimple 

normal injective. For 𝑀 ≤ 𝑁, let 𝑁 = 𝑀 + 𝑇, Z
^�
= ^

^�
+ ��^�

^�
 . Since ^

^�
 is 
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semisimple normal injective, Z
^�
= ^

^�
⨁ ��

^�
  for some subhypermodule                 

��

^�
≤ ��^�

^�
. Therefore, 𝑁 = 𝑀 + 𝑇@ and (𝑀 ∩ 𝑇@)⨁𝑈 for some subhypermodule 

𝑈 ≤	𝑇@. It follows that 𝑁 = 𝑀 + 𝑇@ = 𝑀 + (𝑀 ∩ 𝑇@)⨁𝑈 = 𝑀⨁𝑈 with 𝑈 ≤
𝑇@. Therefore 𝑀 is semisimple normal injective.                                                           ∎ 

Now we close this section with the following elementary observation: 

Corollary 3.17 If 𝑀 = 𝑀L +𝑀M +⋯+𝑀�, where each 𝑀k is a semisimple 
normal injective Krasner hypermodule, then 𝑀 is semisimple normal injective. 

Proof. The external product of Krasner hypermodules 𝑀L,𝑀M,… ,𝑀� say 
𝑁. By Theorem 3.16, 𝑁 is semisimple normal injective. Then it follows from 
Theorem 3.14 that 𝑀 is semisimple normal injective.                                                ∎ 

Finally we have the following implications on subhypermodules:  

Normal Injective Krasner Hypermodule⟹Semisimple Normal Injective 
Krasner Hypermodule 

 

4. CONCLUSION 

In this chapter, semisimple normal injective left Krasner 𝑅-hypermodules is 
defined on a Krasner hyperring 𝑅 and the features provided by these 
hypermodules are associated with the concept known as normal injective 
hypermodule in literature. For this association, first of all, (E) and (EE) 
properties on hypermodules and the concepts of semisimple normal injective 
hypermodules were defined. Indeed, we characterize semisimple normal 
injective Krasner hypermodules via strongly injective modules. Studies on 
strongly injective modules can be accessed in detail from (Türkmen & Nişancı 
Türkmen, 2021).  

Open Problem: Studying the subject of this study on commutative 
hyperdomains especially Dedekind hyperdomains will ensure that it is found 
indecomposable and reduced parts of semisimple normal injective 
hypermodules. 
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Chapter 2 

 
ON QUASINORMAL SUBGROUPS 

Assist. Prof. Dr. Yıldız AYDIN 

İstanbul Gelisim University, Department of Management Information Systems 

 

1. INTRODUCTION 

In the theory of groups, normality of a subgroup is of paramount importance. 
Such subgroups play an important role in determining the structure of a group. 
For instance quotient groups are constructed through normal subgroups. For an 
arbitrary group 𝐺, we call a subgroup 𝐻 of 𝐺 normal if every conjugate of 𝐻 
with each element of 𝐺 is equal to the subgroup 𝐻 again. There are weaker 
versions of normality of a subgroup such as quasinormality. Quasinormal 
subgroups are first introduced by Ore in his paper ‘Structures and Group Theory 
I’ in 1937. A subgroup 𝐻 of a group 𝐺 is called quasinormal if it permutes with 
all subgroups of 𝐺, i.e. 𝐻 is called quasinormal if 𝐾𝐻 = 𝐻𝐾 for all subgroups 𝐾 
of 𝐺. Ore also showed that quasinormal subgroups are subnormal and modular. 
Many studies have been done after Ores’ paper. Gross gave upper bounds for 
nilpotency class and derived length of a subgroup which is core-free and 
quasinormal in a p-group in ‘p-Subgroups of Core-free Quasinormal Subgroups’ 
and ‘p-Subgroups of Core-free Quasinormal Subgroups II’. Then Stonehewer 
proved the existence of non-soluble group which is generated by two metabelian 
quasinormal subgroups and also showed that a group generated by soluble 
quasinormal subgroups is locally soluble in the paper named ‘Permutable 
Subgroups of Some Finite p-Groups’. If we take a look to more recent works 
Stonehewer reduced the studies to the class of p-groups in his paper 
‘Quasinormal Subgroups of Finite p-Groups’ in 2010. Cossey and Stonehewer 
studied the special case where the quasinormal subgroup is abelian in ‘Abelian 
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Quasinormal Subgroups of Finite Groups’. Studies on quasinormal subgroups 
are not restricted with finite groups. In 2014 Leone presented her paper 
‘Quasinormal Subgroups of Infinite Groups’. 

In this section we give an account of relation between quasinormal 
subgroups and Frattini subgroup of a finite group. 

 

2. PRELIMINARIES 

2.1 Quasinormality 

In this section, we begin with definition of quasinormal subgroups. All 
groups are finite in the Chapter. 

Definition 2.1.1 Let 𝐺 be a group and 𝐻,𝐾 be subgroups of 𝐺. 𝐻 and 𝐾 are 
said to be “permutable” if 

𝐻𝐾 = 𝐾𝐻 = 〈𝐻,𝐾〉 

If 𝐻 is permutable with all subgroups of 𝐺 then 𝐻 is called “quasinormal” 
in 𝐺. [Ore, 1937].  

One can easily notice that every normal subgroup is quasinormal but the 
converse does not hold in general.  

Definition 2.1.2 A group 𝐺 is “permutably decomposed” if 𝐺 = 𝐴𝐵, where 
𝐴 and 𝐵 are permutable. In this case we say that 𝐴 and 𝐵 are “permutably 
contained” in 𝐺. [Ore, 1939]. 

Following three theorems are useful for one who searches normal subgroups 
in a group. 

Theorem 2.1.3 Let 𝐺 be a group and 𝐺 = 𝐴𝐵 for some subgroups  𝐴 and 𝐵 
of 𝐺. Then, 

𝐶 = {𝑎 ∈ 𝐴|		𝑏𝑎𝑏12 ∈ 𝐴,			∀𝑏 ∈ 𝐵} 

is normal in 𝐺. [Ore, 1939]. 
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Theorem 2.1.4 Let 𝐺 be a group and 𝐺 = 𝐴𝐵 for some subgroups  𝐴 and 𝐵 
of 𝐺. Let 𝐵5 ⊴ 𝐵 and 𝐵5 ≤ 𝐴 ∩ 𝐵. Then there exists a subgroup 𝐴5 of 𝐴 such 
that    𝐵5 ≤ 𝐴5 and 𝐴5 ⊴ 𝐺. [Ore, 1939]. 

Theorem 2.1.5 Let 𝐺 be a group and 𝐺 = 𝐴𝐵 for some subgroups  𝐴 and 𝐵 
of 𝐺 and 𝐵 be abelian. If 𝐴 ∩ 𝐵 ≠ 𝑒 then for every subgroup of 𝐻 of A, 𝐻 is 
normal in 𝐺. [Ore, 1939]. 

As we mentioned in Introduction quasinormal subgroups are modular too. 
Now it would be appropriate to give definition of modular subgroups of a group. 

Definition 2.1.6 Let 𝐺 be a group and 𝑀 be subgroup of 𝐺. For all 𝐻,𝐾 ≤
𝐺 with 𝐻 ≤ 𝐾 if, 

〈𝐻,𝑀〉 ∩ 𝐾 = 〈𝐻,𝑀 ∩ 𝐾〉           (2.1) 

and for all 𝐻,𝐾 ≤ 𝐺 with 𝑀 ≤ 𝐾 if, 

〈𝐻,𝑀〉 ∩ 𝐾 = 〈𝐻 ∩ 𝐾,𝑀〉           (2.2) 

then 𝑀 is called “modular” subgroup of 𝐺. [Stonehewer, 2010]. 

For finite p-groups quasinormality and modularity of subgroups coincide.  

The definition of modularity depends on two conditions, i. e. (2.1) and (2.2). 
If we only use the first one, we can give the definition below. 

Definition 2.1.7 Let 𝐺 be a group and 𝑀 is a subgroup of 𝐺. 𝑀 is called 
“semimodular” if (2.1) holds. of 𝐺. [Stonehewer, 2010]. 

Semimodularity may be enough for a subgroup to be quasinormal in a 
special case. See the Proposition below. 

Proposition 2.1.8 Let 𝐺 be a finite p-group and 𝑀 be a semimodular 
subgroup of G. Then 𝑀 is quasinormal [Stonehewer, 2010]. 

Similarly another definition could be done for the second condition of 
modularity. It is; 

Definition 2.1.9 Let 𝐺 be a group and 𝑀 is a subgroup of 𝐺. 𝑀 is called 
“weak modular” if (2.2) holds [Stonehewer, 2010]. 
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Of course there exists a proposition for weakly modularity too.  

Proposition 2.1.10 Let 𝐺 be a finite p-group and 𝑀 be a weakly modular 
subgroup of G. Then 𝑀 is quasinormal [Stonehewer, 2010]. 

For a useful characterization of semimodularity we will give a proposition 
but we first need to define the maps 𝜙 and 𝜓. 

Definition 2.1.11 Let 𝐺 be a group and 𝑋, 𝑌 be subgroups of 𝐺. Then  

𝜙@,A: [𝑋 ∕ 𝑋 ∩ 𝑌] → [〈𝑋, 𝑌〉 ∕ 𝑌] 

by 

𝜙(𝐴) = 〈𝐴, 𝑌〉 

and  

𝜓@,A: [〈𝑋, 𝑌〉 ∕ 𝑌] → [𝑋 ∕ 𝑋 ∩ 𝑌] 

by 

𝜓(𝐵) = 𝑋 ∩ 𝐵 

Here for given subgroups 𝐴 ≤ 𝐵, the lattice of subgroups between 𝐴 and 𝐵 
is denoted by [𝐴/𝐵] [ Stonehewer, ]. 

Proposition 2.1.12 Let 𝐺 be a group and 𝐴 be a subgroup of 𝐺. Then, 

(i) 𝐴 is semimodular in 𝐺 if and only if for all 𝑋 ≤ 𝐺 
 

𝜙@,J𝜓@,J = 𝑖𝑑[@∕@∩J] 

(ii) if 𝐴 is semimodular in 𝐺, 
 

𝜓J,@𝜙J,@ = 𝑖𝑑[〈@,J〉∕A] 

Here 𝑖𝑑J is the identity map of some set	𝐴. [ Stonehewer, 2010]. 
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2.2 Frattini Subgroup  

For futher results we recall the Frattini Subgroup of a group.  

Definition 2.2.1 Let 𝐺 be a group. The intersection of all maximal 
subgroups is called the “Frattini Subgroup” of 𝐺 and denoted by Φ(𝐺) 
[Robinson, 1996] 

Following theorem of Ore gives the relation between normal subgroups and 
maximal subgroups in a soluble group. 

Theorem 2.2.2 Let 𝐺 be a soluble group and 𝑁 ⊴ 𝐺. Then all maximal 
subgroups containing 𝑁 are conjugate. Conversely all conjugate maximal 
subgroups contain the same normal subgroup 𝑁 [Ore, 1937]. 

The theorem below presents the characterizations of finite nilpotent groups. 

Theorem 2.2.3 Let 𝐺 be a finite group. Then the followings are equivalent: 

(i) 𝐺 is nilpotent. 
(ii) Every subgroup of 𝐺 is subnormal. 
(iii) 𝐺 satisfies the normalizer condition. 
(iv) Every maximal subgroup of 𝐺 is normal. 
(v) 𝐺 is the direct product of its Sylow subgroups [Robinson, 1996]. 

As a conclusion of previous theorem one can easily notice that every finite 
p-group is nilpotent so it satisfies all the characterizations of the theorem.  

Finally we give the following theorem which forms the fundamental idea of 
the definition in the next section. 

Theorem 2.2.4 Let 𝐺 be a finite group and 𝑀 be a maximal subgroup of 𝐺. 
Then 

(i) Either 𝑍(𝐺) ≤ 𝑀 or 𝐺′ ≤ 𝑀 
(ii) 𝐺′ ∩ 𝑍(𝐺) ≤ Φ(𝐺) 
(iii) 𝑍(𝐺) ≰ 𝑀 ⟹ 𝑀 ⊲ 𝐺 [Rose, 1978]. 

Readers are referred to [Rose, 1978] and [Robinson, 1996] for necessary 
background. 
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3. ON QUASINORMAL SUBGROUPS OF FINITE p-
GROUPS  

In this section we shall investigate some properties of new subgroups, first 
we begin with defining them.  

Definition 3.1 Let 𝐺 be a group. Then ΦT(U) and ΦUV are defined as, 

ΦT(U) = W 𝑀X
T(U)YZ[

 

and 

ΦUV = W 𝑀X
UVYZ[

 

where 𝑀X are maximal subgroups of 𝐺. 

Here 𝑍(𝐺) and 𝐺′ are the centre and the commutator subgroup of 𝐺.  

We know that these sets are nontrivial if 𝑍(𝐺) or 𝐺′ is nontrivial and of 
course they are subgroups of 𝐺.  

It is well known that both 𝑍(𝐺) and 𝐺′ are normal in any group 𝐺. But when 
it comes to the normality (or quasinormality) of ΦT(U) and ΦUV , 𝐺 must have 
some special conditions. 

A strike corollary follows from the definition. 

Corollary 3.2 Let 𝐺 be a finite group. Then ΦT(U) ∩ ΦU] = Φ(𝐺)  

Next lemma is crucial forte subgroups above to be normal (quasinormal).  

Lemma 3.3 Let 𝐺 be a soluble group and 𝑀 be a maximal subgroup of 𝐺. 
If 𝑀 contains both 𝑍(𝐺) and 𝐺′ then all maximal subgroups contain both 𝑍(𝐺) 
and 𝐺′. Otherwise the class of maximal subgroups of 𝐺 is union of two disjoint 
subset.  

Proof. If 𝐺 is abelian then 𝐺V = 1 and 𝑍(𝐺) = 𝐺, so the proof is done. Then 
assume 𝐺 is not abelian. Since 𝐺 is finite then all maximal subgroups of 𝐺 
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contains either 𝑍(𝐺) or 𝐺′ by Theorem 2.2.4. Denote the class of maximal 
subgroups of 𝐺 by 

𝐶𝑙(𝐺,⋖) = {𝑀 ≤ 𝐺|𝑀 ⋖ 𝐺} 

and let  

𝐶𝑙T(U)(𝐺,⋖) = {𝑀 ∈ 𝐶𝑙(𝐺,⋖)|		𝑍(𝐺) ≤ 𝑀} 

𝐶𝑙UV(𝐺,⋖) = {𝑀 ∈ 𝐶𝑙(𝐺,⋖)|		𝐺′ ≤ 𝑀} 

here 𝑀 ⋖ 𝐺 means that 𝑀 is a maximal subgroup of 𝐺. 

Obviously 𝐶𝑙T(U)(𝐺,⋖) and 𝐶𝑙UV(𝐺,⋖) are subsets of 𝐶𝑙(𝐺,⋖). And again 
by Theorem 2.2.4  

𝐶𝑙T(U)(𝐺,⋖) ∪ 𝐶𝑙U](𝐺,⋖) = 𝐶𝑙(𝐺,⋖) 

For the first part of the lemma let 𝑀 contains both 𝑍(𝐺) and 𝐺′. Then 

𝑀 ∈ 𝐶𝑙T(U)(𝐺,⋖) 

and 𝑀 ∈ 𝐶𝑙U](𝐺,⋖).	Since 𝑍(𝐺) and 𝐺′ are normal subgroups then each 

𝑀∗ ∈ 𝐶𝑙T(U)(𝐺,⋖) 

must contain 𝐺′ by Theorem 2.2.2. Similarly each 𝑀∗ ∈ 𝐶𝑙UV(𝐺,⋖) must 
contain 𝑍(𝐺). So both 𝐶𝑙T(U)(𝐺,⋖) and 𝐶𝑙UV(𝐺,⋖) consist of maximal 
subgroups which contain both 𝑍(𝐺) and 𝐺′. Then 

𝐶𝑙T(U)(𝐺,⋖) = 𝐶𝑙UV(𝐺,⋖) = 𝐶𝑙(𝐺,⋖) 

For the second part of the lemma let 𝑀 ∈ 𝐶𝑙UV(𝐺,⋖) and 𝑀 ∉ 𝐶𝑙T(U)(𝐺,⋖). 
Since 𝐺 is not abelian then 𝐶𝑙T(U)(𝐺,⋖) ≠ ∅ and let 𝑀∗ ∈ 𝐶𝑙T(U)(𝐺,⋖). If 𝑀∗ 
contains 𝑍(𝐺) then 𝑀 and 𝑀∗ would be conjugate and they would contain the 
same normal subgroups by Theorem 2.2.2. It means that 𝑀 ∈ 𝐶𝑙T(U)(𝐺,⋖) 

Which is a contradiction. So 

𝐶𝑙T(U)(𝐺,⋖) ∩ 𝐶𝑙U](𝐺,⋖) = ∅ 
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For any finite group ΦUV is normal (and quasinormal) in 𝐺 by Theorem 2.2.4 
(iii). But for ΦT(U) we have to restrict finite groups to finite p-groups. Obviously 

if 𝐺 is a finite p-group, then 𝐺 is nilpotent and every maximal subgroup of 𝐺 is 
normal, so ΦT(U) is normal (and quasinormal ) in 𝐺. 

For simplicity we enumerate the conditions in Lemma 3.3 by (1) and (2), 
where 

(1)       𝐶𝑙T(U)(𝐺,⋖) = 𝐶𝑙UV(𝐺,⋖) 
(2)       𝐶𝑙T(U)(𝐺,⋖) ∩ 𝐶𝑙U](𝐺,⋖) = ∅ 

It is easy to see that for finite p-groups there is no other condition except 
these conditions by Lemma 3.3.                                                                                      ∎ 

Theorem 3.4 Let 𝐺 be a finite p-group. Then ΦT(U)is a unique minimal 
(normal) subgroup of 𝐺. 

Proof. Since 𝐺 is finite p-group ΦT(U) is normal (and quasinormal) in 𝐺 by 
the explanations above.  

Now consider the maps 𝜙 and 𝜓 defined in Definition 2.1.11. Assume for 
every 𝑋 ≤ 𝐺 

𝑋 ∩ ΦT(U) ≤ 𝐻 ≤ 𝑋 

then  𝜙(𝐻) = 〈𝐻,ΦT(U)〉 and for ΦT(U) ≤ 〈𝐻,ΦT(U)〉 ≤ 〈𝑋,ΦT(U)〉 

	𝜓f〈𝐻,ΦT(U)〉g = 〈𝐻,ΦT(U)〉 ∩ 𝑋. 

Since ΦT(U) is quasinormal then it is modular (and semimodular) by  
[Ore, 1937]. So, 

𝜓f〈𝐻,ΦT(U)〉g = 〈𝐻,ΦT(U)〉 ∩ 𝑋 = 𝐻 

by Proposition 2.1.12 (i). Therefore 𝐻 = 〈𝐻,ΦT(U)〉 because 𝐻 ≤ 𝑋. This 

implies that ΦT(U) ≤ 𝐻. Finally ΦT(U) is a unique minimal normal subgroup since 
𝐻 and 𝑋 are arbitrary subgroups of 𝐺.                                                                                  ∎ 

Corollary 3.5 Let 𝐺 be a finite p-group. Then ΦT(U) = ΦU] = Φ(𝐺).  
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Proof. The same way to prove Theorem 3.4 could be done for ΦU] and since 
they are unique then ΦT(U) = ΦU]. Also we have ΦT(U) ∩ ΦU] = Φ(𝐺) by 
Corollary 3.2. So ΦT(U) = ΦU] = Φ(𝐺). 

One may say that the previous corollary implies that only condition (1) holds 
for 𝐺. But we have to keep in mind that in condition (2) the intersection of 
maximals in both 𝐶𝑙T(U)(𝐺,⋖) and 𝐶𝑙UV(𝐺,⋖) could be the same subgroup too.  

We finish this section with applications of ΦT(U) and ΦU] to Theorem 2.1.3, 

Theorem 2.1.4, Theorem 2.1.5.                                                                                ∎ 

Corollary 3.6 Let 𝐺 be a group. Then, 

𝐶 = h𝑎 ∈ ΦT(U)i		𝑏𝑎𝑏12 ∈ ΦT(U),			∀𝑏 ∈ ΦU]j 

is normal in 〈ΦT(U)	, ΦU]〉. 

Proof. It is clear by Theorem 2.1.3 since ΦU] is normal in 〈ΦT(U)	, ΦU]〉.   ∎ 

Corollary 3.7 Let 𝐺 be a group, 𝐵 ⊴ ΦU] and 𝐵 ≤ Φ(𝐺). Then for some 
𝐵 ≤ 𝐴, 𝐴 is normal in 〈ΦT(U)	, ΦU]〉. 

Proof. Clear by Theorem 2.1.4.                                                                                  ∎ 

Corollary 3.8 Let 𝐺 be a group, ΦU] be abelian and Φ(𝐺) ≠ 1. Then for 
some 𝐻 ≤ ΦT(U), 𝐻 is normal in 〈ΦT(U)	, ΦU]〉. 

Proof. Directly seen by Theorem 2.1.5.                                                               ∎ 

 

4. CONCLUSION 

The minimality of ΦT(U) and ΦU] given in Theorem 3.4 could be combined 
with last three corollaries above. Readers may investigate more about the 
structure of ΦT(U) and ΦU]. These subgroups are located between Φ(𝐺) and G. 
So there are at least two different normal series of 𝐺. Readers also may search 
those series. It seems there are a lot of fields to study on ΦT(U) and ΦU].  
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1. INTRODUCTION 

SS-supplemented modules which are studied in (Kaynar et al., 2020) as a 
strongly notion of an important class of supplemented modules. Supplemented 
modules have been extensively studied in recent years. Important features and 
characterizations of module theory can be found of (Clark et al., 2006), 
(Mohamed & Müller, 1990); Wisbauer, 1991). Meanwhile, none as the 
researchers so far have taken an ss-supplemented hyperstructural approach, 
while only it has been studied as a concept that has entered the literature in 
module theory. We will introduce this concept with the help of hypermodule, 
taking inspiration from ss-supplemented modules and studies on basic topics. 
Let 𝑀 be a module. 𝑀 is called “ss-supplemented” if every submodule 𝑁 of 𝑀 
has a supplement 𝐾 in 𝑀 such that 𝑁 ∩ 𝐾 is semisimple in (Kaynar et al., 2020). 
As we know from definitions, a hypermodule may not contain an element like 
0. Morever, the intersection of each two subhypermodules of an 𝑅- hypermodule 
is not a subhypermodule of that hypermodule, in general, So, we will work with 
Krasner hypermodule on Krasner hyperring, not working with the hypermodules 
on any hyperring. We refer the researchers for more details about hyperstructures 
theory to (Ameri&Shojaei,2020; Corsini,1994; Corsini& Leoreanu,2003; 
Davvaz,2012; Davvaz,2007; Hamzekolaee et al.,2021; Marty,1934; Talaee, 
2013) 
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The remaining sections inside will be as follows, in section 2, basic 
definition and properties that will be read related to hyperstructures will be 
given, in section 3, the concept strongly local hypermodules and ss-
supplemented hypermodules will be characterized by the help of hyperring by 
giving algebraic propertied by these concepts. 

 

2. BASIC DEFINITIONS 

Let 𝐻 be a non-empty set and mapping ∘: 𝐻 × 𝐻 ⟶ 𝑃∗(𝐻) where 𝑃∗(𝐻) is 
the set of every non-empty subset of 𝐻. Then the mapping " ∘ " is called a 
“hyperoperation” on H and the algebraic hyperstructures is based on this 
hyperoperation. Theory of hyperstructures was first introduced by Marty in 
(Mahjoob & Ghaffari, 2018). Many important developments have been 
presented by this concept and interest in this theory have been rised by algebraist 
till now. To prove this assertion, we refer readers (Corsini & Leoreanu, 2003; 
Hamzekolaee et al., 2021; Marty, 1934; Talaee, 2013), Talaee introduced and 
studied classical algebraic properties of small subhypermodules in 
hypermodules in the same way as the concept as in module theory. We specialize 
here this study to a more special contex.  

In what follows, we give some basic definitions about hypergroups, 
hyperring and hypermodule which we need in this paper. 

Let “∘”  be a hyperoperation on 𝐻. Then (𝐻,∘) is called a “hypergroupoid”. 
It is defined sets 

𝑋 ∘ 𝑌 =5 𝑥 ∘ 𝑦89:
;9<

 

and 𝑋 ∘ {𝑎} = 𝑥 ∘ 𝑎 for 𝑎 ∈ 𝐻 and 𝑋, 𝑌 ∈ 𝑃∗(𝐻). A hypergroupoid (𝐻,∘) is 
called a “semihypergroup” if for every 𝑎, 𝑏, 𝑐 ∈ 𝐻, we have (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘
(𝑏 ∘ 𝑐). A semihypergroup (𝐻,∘) is called a “hypergroup” if  

𝑎 ∘ 𝐻 = 𝐻 ∘ 𝑎 = 𝐻 

for every 𝑎 ∈ 𝐻. A non-empty subset 𝐹 of a hypergroup (𝐻,∘) is called a 
“subhypergroup” if 
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𝑓 ∘ 𝐹 = 𝐹 ∘ 𝑓 = 𝐹 

for every 𝑓 ∈ 𝐹. A hypergroup 𝐻 is called “commutative” if the 
hyperoperation “∘” is commutative on the set of 𝐻. A commutative hypergroup 
(𝐻,∘) is called “canonical”, if the following three condition satisfies.  

1. There exists a unique of 𝐻 such that 𝑎 ∘ 0 = {𝑎} for every 𝑎 ∈ 𝐻.  
2. There exists a unique 𝑎EF ∈ 𝐻 such that 𝑎 ∈ 𝑎 ∘ 𝑎EF for every 𝑎 ∈ 𝐻. 
3. If 𝑎 ∈ 𝑏 ∘ 𝑐, then 𝑏 ∈ 𝑎 ∘ 𝑐EF and 𝑐 ∈ 𝑏EF ∘ 𝑎 for every 𝑎, 𝑏, 𝑐 ∈ 𝐻  
      (Davvaz, 2007). 

The triple (𝑅,⊎,∘) is a hyperring, if (𝑅,⊎) is a hypergroup, (𝑅,∘) is a 
“semihypergroup” and “∘” is distributive over “⊎” (Davvaz, 2007). A hyperring 
(𝑅,⊎,∘) is called Krasner, if (𝑅,⊎) is a canonical hypergroup and (𝑅,∘) is a 
semigroup such that 0 is a zero element, i.e. 𝑥 ∘ 0 = 0 = 0 ∘ 𝑥 for every 𝑥 ∈ 𝑅 
(Davvaz, 2007). Let (𝑅,⊎,∘)	be a hyperring, (𝑀,+) a hypergroup and ∗
: 𝑅 × 𝐻 ⟶ 𝑓∗(𝐸𝐾2) an external hyperoperation (𝐻,+, . ) is called a “left 
𝑅-hypermodule” if it satisfies following statements for every 𝑟F, 𝑟N ∈ 𝑅, ℎF, ℎN ∈ 𝐻  

1. 𝑟F(	ℎF+ℎN) = (𝑟F. ℎF) + (𝑟N. ℎN); 
2. (𝑟F ⊎ 𝑟N). ℎF = (𝑟FℎF) + (𝑟NℎN) 
3. (𝑟F𝑟N). ℎF = 𝑟F. (𝑠FℎF) (Davvaz, 2007). 

In similar way, as right hypermodule over 𝑅 can be defined. If (𝐻,+) is a 
canonical hypergroup and (𝑅,⊎, . ) is a Krasner hyperring, then 𝐻 is called 
“canonical 𝑅-hypermodule” where “.” is  an external operation, that is 
. : 𝑅 × 𝐻 ⟶ 𝐻 by (𝑟, 𝑏) ⟶ 𝑟. 𝑏 and 𝑟. 0 = 0. A non-empty subset 𝐹 of on 
(Krasner) 𝑅-hypermodule 𝐻 is called a “subhypermodule”, denoted by 𝐹 ≤ 𝐻, 
if 𝐹 itself is a (Krasner) hypermodule over 𝑅 with hyperoperation defined on 
𝑅 × 𝐻. Let 𝑀 be a Krasner 𝑅-hypermodule. A subhypermodule 𝐹 is “small” in 
𝐻 (denoted by 𝐹 << 𝐻), if  𝐹 + 𝐿 = 𝐻 implies 𝐿 = 𝐻, where 𝐿 ≤ 𝐻. 
Equivalently, if 𝐿 is a proper subhypermodule of 𝐻, then 𝐹 + 𝐿 ≠ 𝐻 (Wisbauer, 
1991). Let 𝐻 be a Krasner hypermodule. 𝐻 is called “hollow” if every proper 
subhypermodule of 𝐻 is small in 𝐻 and 𝐻 is called “local” if 𝐻 has a proper 
subhypermodule that contains all proper subhypermodules of 𝐻 (Hamzekolaee 
et al., 2021). It is clear that every local hypermodule is hollow. Let 𝐻 be a 
hypermodule over a hyperring. 𝑅 and 𝐹 ≤ 𝐻. Consider set 𝐻 𝐹⁄ =
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{ℎ + 𝐹|ℎ ∈ 𝐻}. Then 𝐻 𝐹⁄  is a hypermodule over 𝑅 under hyperoperation 
defined by +:	𝐻 𝐹⁄ × 𝐻 𝐹⁄ ⟶ 𝑃∗(𝐻 𝐹⁄ ) and external composition . : 𝑅 ×
𝐻 𝐹⁄ ⟶ 𝐻 𝐹⁄  such that 

ℎF + 𝐹 + ℎN + 𝐹 = {𝑥 + 𝐹|𝑥 ∈ ℎF + ℎN} 

and 𝑟. (ℎ + 𝐹) = 𝑟ℎ + 𝐹 for every ℎ, ℎF, ℎN ∈ 𝐻 and 𝑟 ∈ 𝑅. Let 𝐻 be a 
hypermodule, 𝐽 on indexed set and 

𝜒 = Y𝐹Z[	𝑗 ∈ 𝐽] 

be a set of subhypermodules of 𝐻. It is called that 𝐻 satisfies “CPS 
(commutative property for sums) on 𝜒” if for every subset 𝐾 of 𝐽. We have 
∑ 𝐹__∈` = ∑ 𝐹aa∈b , where Γ is a permutation of 𝐾. A Krasner 𝑅- hypermodule 
always satisfies CPS on the set of its all subhypermodules. Let 𝐻 be a Krasner 
𝑅-hypermodule such that 𝐻 satisfies CPS on the set of its all small 
subhypermodules. The sum of all small subhypermodule of 𝐻 defined by 

𝑅𝑎𝑑(𝐻) =e 𝐹
f≪h

 

If 𝐻 has no small subhypermodule, 𝑅𝑎𝑑(𝐻) = 𝐻 is assumed. Let 𝐻 be a 
Krasner 𝑅- hypermodule. Then 𝐻 is local if and only if it is local and 𝑅𝑎𝑑(𝐻) ≠
𝐻 (Hamzekolaee et al., 2021). Let (𝐻F, +F, .F ) and (𝐻N, +N, .N ) be Krasner 
hypermodules over 𝑅. A mapping 𝑓:𝐻F ⟶ 𝐻N	 is called a “strong 
homomorphism”, if 𝑓(𝑥	+F	𝑦) = 𝑓(𝑥)	+N	𝑓(𝑦) and 𝑓(𝑟.F 𝑥) = 𝑟	.N 𝑥 for every 
𝑥, 𝑦 ∈ 𝐻F and 𝑟 ∈ 𝑅 (Hamzekolaee et al., 2021). Let 𝑓:𝐻F ⟶ 𝐻N be a strong 
homomorphism of Krasner hypermodules. The set of 𝐾𝑒𝑟𝑓 =
Y𝑥 ∈ 𝐻F[𝑓(𝑥) = 0hj] is a subhypermodule of 𝐻F (Hamzekolaee et al., 2021). 
Let 𝐻 be a Krasner 𝑅-hypermodule. A subhypermodule 𝐻 is called a “direct 
summand” of 𝐻, if there exists a subhypermodule 𝐹 of 𝐻 such that 𝐹 ∩ 𝐻 = {0} 
and 𝐹 + 𝐿 = 𝐻 (Talaee, 2013). A non-zero 𝑅-hypermodule 𝐻 is called simple, 
if the only subhypermodules of 𝐻 are {0h} and 𝐻 by (Mahjoob & Ghaffari, 
2018). The set of all simple subhypermodules of an 𝑅-hypermodule 𝐻 is denoted 
by 𝑆(𝑀). Let 𝐻 be on 𝑅-hypermodule. Then 𝐻 is called “semisimple” if for every 
subhypermodule 𝐹 of 𝐻, there is a subhypermodule 𝐾 of 𝐻 such that 𝐻 = 𝐹 ⊕
𝐾 in (Mahjoob & Ghaffari, 2018). Let 𝐻 be an 𝑅-hypermodule. 𝐻 is called 
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supplemented if for every subhypermodule 𝐹 of 𝐻 has a supplement in 𝐻, i.e. 
there exists a subhypermodule 𝐿 of 𝐻 such that     𝐻 = 𝐹 + 𝐿 and 𝐹 ∩ 𝐿 ≪ 𝐿 
(Hamzekolaee et al., 2021). Let 𝐻 be an 𝑅-hypermodule and 𝐹 be a 
subhypermodule of 𝐻. If for every subhypermodule 𝐿 of 𝐻 such that 𝐻 = 𝐹 +
𝐿, there exists a supplement 𝐿m of 𝐹	with 𝐿m ≤ 𝐿, then we say 𝐹 has “ample 
supplements” in 𝐻. If every subhypermodule of 𝐻 has ample supplements in 𝐻, 
then 𝐻 is called an “amply supplemented hypermodule” (Hamzekolaee et al., 
2021).  

 

3. STRONGLY LOCAL KRASNER HYPERMODULES 

In this part, we define the notion of strongly local hypermodules and provide 
various properties of these hypermodules. 

We call a Krasner hypermodule 𝐻 “strongly local” if it is local and 𝑅𝑎𝑑(𝐻) 
is semisimple. The concept of strongly local hypermodule is a generalization of 
concept of simple hypermodules, but it is a specialized by the concept of local 
hypermodules. By 𝑆𝑜𝑐(𝐻), we denote by sum of all semisimple subhypermodule 
of 𝐻. Using by the radical of hypermodule 𝐻, i.e. 𝑅𝑎𝑑(𝐻), we specialized 
𝑆𝑜𝑐(𝐻) to 𝑆𝑜𝑐o(𝐻). We define a subhypermodule 𝑆𝑜𝑐o(𝐻) as 
∑{𝐹 ≪ 𝐿|𝐹	is	simple}. We clearly seen that 𝑆𝑜𝑐o(𝐻) ⊆ 𝑆𝑜𝑐(𝐻) and 
𝑆𝑜𝑐o(𝐻) ⊆ 𝑅𝑎𝑑(𝐻).  

Let’s start the section with the lemmas that we will use frequently. 

Lemma 3.1 Let 𝐻 be a Krasner hypermodule and 𝐹 be a semisimple 
subhypermodule in 𝑅𝑎𝑑(𝐻). Then	𝐹 << 𝐻. 

Proof. Consider the subhypermodule 𝐿 of 𝐻 such that 𝐻 = 𝐹 + 𝐿. By the 
hypothesis, there exists a subhypermodule 𝐹m of 𝐹 such that 𝐹 = (𝐹 ∩ 𝐿)⊕ 𝐹m. 
Thus 𝐻 = 𝐹 + 𝐿 = [(𝐹 ∩ 𝐿)⊕ 𝐹m] + 𝐿 = 𝐹m + 𝐿. Since 𝐹m ∩ 𝐿 = (𝐹m ∩ 𝐹) ∩
𝐿 = 𝐹m ∩ (𝐹 ∩ 𝐿) = {0h} by Lemma 2.11 of (Talaee, 2013), then 𝐻 = 𝐹m ⊕ 𝐿. 
It follows from 𝑅𝑎𝑑(𝐹m) ⊆ 𝑅𝑎𝑑(𝐹) = 0 that 𝑅𝑎𝑑(𝐻) = 𝑅𝑎𝑑(𝐿). So 𝐻 = 𝐹 +
𝐿 ⊆ 𝑅𝑎𝑑(𝐻) + 𝐿 ⊆ 𝐿. Thus 𝐹 ≪ 𝐻.                                                                            ∎ 

Lemma 3.2 Let 𝐻 be a Krasner hypermodule. Then 𝑆𝑜𝑐o(𝐻) = 𝑅𝑎𝑑(𝐻) ∩
𝑆𝑜𝑐(𝐻). 
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Proof. It is clear that 𝑆𝑜𝑐o(𝐻) ⊆ 𝑅𝑎𝑑(𝐻) ∩ 𝑆𝑜𝑐(𝐻), for the converse 
inclusion, we take 

𝑥 ∈ 𝑅𝑎𝑑(𝐻) ∩ 𝑆𝑜𝑐(𝐻) 

Then there exist 𝑚 ∈ ℕ∗ and simple subhypermodules 𝐹Z of 𝐻 (1 ≤ 𝑗 ≤ 𝑚) 
such that 𝐻 is direct sums of every 𝐹Z. Since 𝑅𝑥 ≪ 𝐻, 𝐹Z ≪ 𝐻 for all 𝑗. There 
are 𝑥 ∈ 𝑅𝑥 ⊆ 𝑆𝑜𝑐o(𝐻).                                                                                                   ∎ 

Lemma 3.3 Let 𝐻 be a Krasner hypermodule and 𝐹, 𝐿 be subhypermodules 
of 𝐻. Then the following statements are equivalent.  

1. 𝐻 = 𝐹 + 𝐿 and 𝐹 ∩ 𝐿 ⊆ 𝑆𝑜𝑐o(𝐿), 
2. 𝐻 = 𝐹 + 𝐿, 𝐹 ∩ 𝐿 ⊆ 𝑅𝑎𝑑(𝐿) and 𝐹 ∩ 𝐿 is semisimple, 
3. 𝐻 = 𝐹 + 𝐿, 𝐹 + 𝐿 ≪ 𝐿 and 𝐹 ∩ 𝐿 is semisimple. 

Proof. (1) ⟹ (2) It follows from 𝐹 ∩ 𝐿 ⊆ 𝑆𝑜𝑐(𝐿) ∩ 𝑅𝑎𝑑(𝐿) that 𝐹 ∩ 𝐿 ⊆
𝑅𝑎𝑑(𝐿) and 𝐹 ∩ 𝐿 is semisimple. 

(2)	⟹ (3) Clear by Lemma 3.1. 

(3)	⟹ (1) Clear by Lemma 3.2.                                                                                        ∎ 

We say a non-zero Krasner hypermodule 𝐻 “indecomposable” if the only 
direct summands of 𝐻 are {0h} and 𝐻.  

Lemma 3.4 Let 𝐻 be a Krasner hypermodule, Then, 𝐻 is simple or 
𝑆𝑜𝑐(𝐻) ⊆ 𝑅𝑎𝑑(𝐻). 

Proof. Suppose that 𝐻 is not simple. Let 𝐻 = 𝑆𝑜𝑐(𝐻) + 𝐿 for some 
subhypermodule	𝐿 of 𝐻. Since 𝑆𝑜𝑐(𝐻) is semisimple, there exists a 
subhypermodule 𝐹 of 𝑆𝑜𝑐(𝐻) such that 𝑆𝑜𝑐(𝐻) = (𝑆𝑜𝑐(𝐻) ∩ 𝐿) ⊕ 𝐹. Thus,  

𝐻 = 𝑆𝑜𝑐(𝐻) + 𝐿 = [𝑆𝑜𝑐(𝐻) ∩ 𝐿 ⊕ 𝐹] + 𝐿 = 𝐿 ⊕ 𝐹 

Since 𝐹 is indecomposable but not simple, then 𝐹 = 𝐻. Since 𝑆𝑜𝑐(𝐻) ≪ 𝐻, 
𝑆𝑜𝑐(𝐻) ⊆ 𝑅𝑎𝑑(𝐻).                                                                                               ∎ 

Corollary 3.5 Let 𝐻 be a local Krasner hypermodule which is not simple. 
Then 𝑆𝑜𝑐o(𝐻) = 𝑆𝑜𝑐(𝐻).  
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We call a Krasner hypermodule 𝐻 “radical” if 𝑅𝑎𝑑(𝐻) = 𝐻. We denote by 
𝑃(𝐻), the sum of all radical subhypermodules of 𝐻. Here 𝑃(𝐻) is the largest 
radical subhypermodule of 𝐻. If 𝑃(𝐻) = 0, 𝐻 is called “reduced”. 

Let us give a proposition to help classify strongly local Krasner hyperring. 

Proposition 3.6 Let 𝐻 be a strongly local Krasner hypermodule. Then 𝐻 is 
reduced. 

Proof. By the hypothesis, 𝑃(𝐻) ⊆ 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻). So 𝑃(𝐻) is 
semisimple. Therefore 

𝑃(𝐻) = 𝑅𝑎𝑑~𝑃(𝐻)� = 0 

In the following proposition the main feature of strongly local Krasner 
hypermodule.                                                                                                          ∎ 

Proposition 3.7 Every factor hypermodule of a strongly local Krasner 
hypermodule is strongly local. 

Proof. Let 𝐻 be a strongly local Krasner hypermodule and 𝐹 be a 
subhypermodule of 𝐻. We have 𝐻 𝐹⁄  is a local hypermodule. Consider the 
strongly epimorphism 𝑝:𝐻 ⟶ 𝐻 𝐹⁄ . Since  

𝑅𝑎𝑑(𝐻 𝐹⁄ ) = 𝑅𝑎𝑑(𝐻) 𝐹⁄ ⊆ 𝑝(𝑆𝑜𝑐(𝐻)) ⊆ 𝑆𝑜𝑐(𝐻 𝐹⁄ ) 

𝐻 𝐹⁄  is strongly local.           ∎ 

4. SS-SUPPLEMENTED KRASNER HYPERMODULES 

In this part, we define notion of ss-supplemented Krasner hypermodules and 
we study this notion comparatively with the notion of strongly local 
hypermodules. 

Let 𝐻 be a Krasner 𝑅-hypermodule 𝐻 is called “ss-suplemented” if every 
subhypermodule 𝐹 of 𝐻 has a supplement 𝐿 of 𝐻 such that 𝐹 ∩ 𝐿 is semisimple. 
Let 𝐻 be a Krasner 𝑅-hypermodule and 𝐹 be a subhypermodule of 𝐻. If for every 
subhypermodule	𝐿 of 𝐻 such that 𝐻 = 𝐹 + 𝐿, there exists a ss-supplement 𝐿m of 
𝐹	with 𝐿m ≤ 𝐿, then we call 𝐹 has “ample ss-supplements” in 𝐻. If every 



 

 32 

Lectures of Pure Mathematics on Algebra, Analysis and Geometry 

subhypermodule of 𝐻 has ample ss-supplements in 𝐻, then 𝐻 is called an “ample 
ss-supplemented” hypermodule. 

The relationship of strongly local hypermodule with maximal 
subhypermodules is given in the next proposition. 

Proposition 4.1 Let 𝐻 be a Krasner hypermodule and 𝐹 be a maximal 
subhypermodule of 𝐻. A subhypermodule 𝐿 of 𝐻 is an ss-supplement of 𝐹 in 𝐻 
if and only if 𝐻 = 𝐹 + 𝐿 and 𝐿 is strongly local. 

Proof. (⟹) Let 𝐿 be an ss-supplement of 𝐹 in 𝐻. Since 𝐹 ∩ 𝐿 is semisimple, 
then 𝐿 is local, 𝐹 ∩ 𝐿 = 𝑅𝑎𝑑(𝐿) is the unique maximal subhypermodule of	𝐿 
and 𝑅𝑎𝑑(𝐿) ⊆ 𝑆𝑜𝑐(𝐿). So, 𝐿 is strongly local. 

(⟸) Since 𝐿 is local and 𝐻 = 𝐹 + 𝐿, we have 𝐹 ∩ 𝐿 ⊆ 𝑅𝑎𝑑(𝐿). By the 
hypothesis, 𝐹 ∩ 𝐿 is semisimple. Thus, 𝐿 is an ss-supplement of 𝐹 in 𝐻.            ∎ 

Lemma 4.2 Let 𝐻 be an ss-supplemented Krasner hypermodule and 𝐹 ≪
𝐻. Then 𝐹 ⊆ 𝑆𝑜𝑐�(𝐻). 

Proof. By the hypothesis, 𝐻 is the unique ss-supplement of	𝐹 in 𝐻. 
Therefore 𝐹 ∩ 𝐻 = 𝐹 is semisimple. By using Lemma 3.2, 𝐹 ⊆ 𝑆𝑜𝑐�(𝐻).        ∎ 

Corollary 4.3 Let 𝐻 be an ss-supplemented Krasner hypermodule and 
𝑅𝑎𝑑(𝐻) ≪ 𝐻. Then 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻) 

Proposition 4.4 Every strongly local Krasner hypermodule is amply ss-
supplemented. 

Proof. Let 𝐻 be a strongly local Krasner hypermodule. Then 𝐻 is local. So, 
𝐻 is amply supplemented. Since 𝐻 has no supplement subhypermodule not 
including {0h} and 𝐻. It follows from 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻) that 𝐻 is amply ss-
supplemented.                 ∎ 

Proposition 4.5 Let 𝐻 be a hollow Krasner hypermodule. Then 𝐻 is (amply) 
ss-supplemented if and only if it is strongly local. 

Proof. (⟸) Clear by Proposition 4.4 
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(⟹) Suppose that 𝐻 is ss-supplemented. Let 𝑥 ∈ 𝑅𝑎𝑑(𝐻). Then 𝑅𝑥 ≪ 𝐻. 
So, by Lemma 4.2, 𝑅𝑥 ⊆ 𝑆𝑜𝑐�(𝐻). 

We have 𝑥 ∈ 𝑆𝑜𝑐(𝐻) and 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻). Suppose that 𝐻 is radical. 
Then we have 𝐻 = 𝑆𝑜𝑐(𝐻) and 𝑅𝑎𝑑(𝐻) = 0 = 𝐻. This contradicts that 𝐻 is 
hollow. Therefore 𝐻 ≠ 𝑅𝑎𝑑(𝐻) and so 𝐻 is strongly local.                                ∎ 

Example 4.6 Consider the ℤ-hypermodule 𝐻 = ℤ�� for the hyperring of 
integer ℤ and any prime integer 𝑝. Since hypermodule 𝐻 is hollow, 𝐻 is amply 
supplemented, but not amply ss-supplemented by Proposition 4.5. 

Let us show under what conditions the ss-supplemented Krasner 
hypermodule with supplemented hypermodules will equivalent conditions. 

Lemma 4.7 Let 𝐻 be a supplemented Krasner hypermodule and 𝑅𝑎𝑑(𝐻) ⊆
𝑆𝑜𝑐(𝐻). Then 𝐻 is ss-supplemented. 

Proof. Let 𝐹 be a subhypermodule of 𝐻. By the hypothesis, there exist a 
subhypermodule 𝐿 of 𝐻 such that 

𝐻 = 𝐹 + 𝐿 

and 𝐹 ∩ 𝐿 ≪ 𝐿. Then 𝐹 ∩ 𝐿 ⊆ 𝑅𝑎𝑑(𝐿) ⊆ 𝑅𝑎𝑑(𝐻). Since 𝑅𝑎𝑑(𝐻) ⊆
𝑆𝑜𝑐(𝐻), then 𝐹 ∩ 𝐿 is semisimple. Therefore, 𝐿 is a ss-supplement of the 
subhypermodule 𝐹 in 𝐻. So, 𝐻 is ss-supplemented.                                                   ∎ 

Theorem 4.8 Let 𝐻 be a Krasner hypermodule with small radical. Then the 
following statements are equivalent.  

1. 𝐻 is ss-supplemented 
2. 𝐻 is supplemented and 𝑅𝑎𝑑(𝐻) has an ss-supplement in 𝐻. 
3. 𝐻 is supplemented and 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻) 

Proof. (1)⟹(2) Clear 

(2)⟹(3) By Lemma 4.2 

(3)⟹(1) Follows from Lemma 4.7      ∎ 
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Lemma 4.9 Let 𝐻 be a Krasner hypermodule and 𝐹, 𝐿 be subhypermodules 
of 𝐻 with 𝐹 ss-supplemented. If 𝐹 + 𝐿 has an ss-supplement in 𝐻, 𝐿 also has an 
ss-supplement in 𝐻. 

Proof. Let 𝐻 be an ss-supplement of 𝐹 + 𝐿 in 𝐻 and 𝑉 is an ss-supplement 
of (𝑈 + 𝐿) ∩ 𝐹 in 𝐹. Then we have 𝐻 = 	𝑈 + 𝑉 + 𝐿 and (𝑈 + 𝑉) ∩ 𝐿 ≪ 𝑈 + 𝑉 
by Corollary 2.5 of (Talaee, 2013). In addition, 𝑈 ∩ (𝑉 + 𝐿) is a semisimple 
subhypermodule of 𝐻. Since 𝑉 ∩ [(𝑈 + 𝐿) ∩ 𝐹] = 𝑉 ∩ (𝑈 + 𝐿) is semisimple, 
(𝑈 + 𝑉) ∩ 𝐿 is semisimple. Hence 𝑈 + 𝑉 is an ss-supplement of 𝐿 in 𝐻.								∎ 

Proposition 4.10 Let 𝐹, 𝐿 be any subhypermodules of a Krasner 
hypermodule	𝐻 with 𝐻 = 𝐹 + 𝐿. Then if 𝐹 and 𝐿 are ss-supplemented, 𝐻 is ss-
supplemented. 

Proof. Let 𝑇 be any subhypermodule of 𝐻. {0h} is a ss-supplement of 𝐻 =
𝐹 + 𝐿 + 𝑇 in 𝐻. Since 𝐹 is ss-supplement,	𝐿 + 𝑇 has an ss-supplement in 𝐻 by 
Lemma 4.9, Again applying Lemma 4.9, we also obtain that 𝑇 has an ss-
supplement in 𝐻. So, 𝐻 is ss-supplemented.         ∎ 

We have seen that the amply ss-supplemented Krasner hypermodule feature 
is completely inherited in factor hypermodules. 

Proposition 4.11 If 𝐻 is a (amply) ss-supplemented Krasner hypermodule, 
then every factor hypermodule of 𝐻 is (amply) ss-supplemented. 

Proof. Let 𝐻 be an ss-supplemented Krasner hypermodule and 𝐻 𝐹m⁄  be a 
factor hypermodule of 𝐻. By hypothesis, there exists a subhypermodule 𝐹 of 𝐻 
with contains 𝐹m such that 𝐻 = 𝐹 + 𝐿, 𝐹 ∩ 𝐿 ≪ 𝐿 and 𝐹 ∩ 𝐿 is semisimple. Let 
𝑝:𝐻 ⟶ 𝐻 𝐹m⁄  be a strong epimorphism. Then we have 𝐻 𝐹m⁄ = 𝐹 𝐹m⁄ +
(𝐿 + 𝐹m) 𝐹m⁄  and 

𝐹 𝐹m⁄ ∩ (𝐿 + 𝐹m) 𝐹m⁄ = ~(𝐹 ∩ 𝐿) + 𝐹m� 𝐹m⁄ = 𝑝(𝐹 ∩ 𝐿) ≪ 𝑝(𝐿)

= (𝐿 + 𝐹m) 𝐹m⁄  

by Proposition 2.6 of (Talaee, 2013). Since 𝐹 ∩ 𝐿 is semisimple, 
𝑝(𝐹 ∩ 𝐿) = 𝐹 𝐹m⁄ ∩ (𝐿 + 𝐹m) 𝐹m⁄  is semisimple. Thus, (𝐿 + 𝐹m) 𝐹m⁄  is an ss-
supplement of 𝐹 𝐹m⁄  in 𝐻 𝐹m⁄ . It can be similarly proven that if 𝐻 is amply ss-
supplemented, then so is every factor hypermodule of 𝐻.                                    ∎ 
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Theorem 4.12 Let 𝐻 = ⨁Z∈�𝐻Z, where 𝐻Z is a strongly local Krasner 
hypermodule. Then 𝐻 is ss-supplemented. 

Proof. Since every strongly local hypermodule is local, 𝑅𝑎𝑑(𝐻Z) ⊆
𝑆𝑜𝑐(𝐻Z) for every 𝑗 ∈ 𝐽. So 

𝑅𝑎𝑑(𝐻) = ⨁Z∈�𝑅𝑎𝑑~𝐻Z� ⊆ ⨁Z∈�𝑆𝑜𝑐~𝐻Z� = 𝑆𝑜𝑐(𝐻) 

By Lemma 3.1, 𝑅𝑎𝑑(𝐻) ≪ 𝐻. It follows from Theorem 4.8 that 𝐻 is ss-
supplemented. 

Recall that a Krasner hypermodule 𝐹 is called “𝐻-generated” for a Krasner 
hypermodule 𝐻 if there exists a strongly epimorphism 𝛼:𝐻(�) ⟶ 𝐹 for some 
index set 𝐽.                                                                                                             ∎ 

Corollary 4.13 Let 𝐻 be a strongly local Krasner hypermodule. Then every 
𝐻-generated hypermodule is ss-supplemented. 

Proof. Suppose that 𝐹 is 𝐻-generated. Then there exists a strong 
epimorphism 𝛼: 𝐹(�) ⟶ 𝐻 for some index set 𝐽. By Theorem 4.12, 𝐹(�) is ss-
supplemented. Therefore, 𝐻 is ss-supplemented by Proposition 4.11.               ∎ 

Proposition 4.14 Let 𝐻 be a Krasner hypermodule. If every 
subhypermodule of 𝐻 is ss-supplemented, then 𝐻 is amply ss-supplemented.  

Proof. Let 𝐹 and 𝐿 be subhypermodules of 𝐻 such that 𝐻 = 𝐹 + 𝐿. Since 𝐿 
is ss-supplemented, there exists a subhypermodule 𝐿m of 𝐿 such that 𝐿 =
(𝐹 ∩ 𝐿) + 𝐿m, 𝐹 ∩ 𝐿m ≪ 𝐿m and 𝐹 ∩ 𝐿m is semisimple. Then we have 

𝐻 = 𝐹 + 𝐿 = 𝐹 + ~(𝐹 ∩ 𝐿) + 𝐿m� = 𝐹 + 𝐿m 

So, 𝐹 has ample ss-supplements in 𝐻. Therefore, 𝐻 is amply ss-
supplemented.                                                                                                      ∎ 

The relationship between ss-supplemented subhypermodules and amply ss-
supplemented Krasner hypermodules will be presented in the following lemma. 

Lemma 4.15 Let 𝐻 be amply ss-supplemented Krasner hypermodule and 𝐿 
be an ss-supplement subhypermodule in 𝐻. Then 𝐿 is amply ss-supplemented. 
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Proof. Let	𝐿 be an ss-supplement of a subhypermodule F of 𝐻. Let 𝑈 and 𝑉 
be subhypermodules of 𝐿 such that 𝐿 = 𝑈 + 𝑉. Then 𝐻 = (𝐹 + 𝑈) + 𝑉. Since 
𝐻 is amply ss-supplemented, 𝐹 + 𝑈 has an ss-supplement 𝑉m ⊆ 𝑉 in 𝐻. It 
follows from 𝑈 + 𝑉m ≤ 𝐿 that 𝐿 = 𝑈 + 𝑉m  So 𝐿 = 𝑈 + 𝑉m. Moreover 𝑈 ∩ 𝑉m ≪
𝑉m, as 

𝑈 ∩ 𝑉m ⊆ (𝐹 + 𝑈) ∩ 𝑉m ≪ 𝑉m 

Since (𝐹 + 𝑈) ∩ 𝑉m is semisimple, 𝑈 ∩ 𝑉m is semisimple. So 𝑉m is an ss-
supplement of 𝑈 in 𝐿. Therefore, 𝐿 is amply ss-supplemented.                           ∎ 

Theorem 4.16 Let 𝐻 be a Krasner hypermodule. Then 𝐻 is amply ss-
supplemented if and only if every subhypermodule 𝐹 of 𝐻 is of the form 𝐹 =
𝑈 + 𝑉, where 𝑈 is ss-supplemented and 𝑉 ⊆ 𝑆𝑜𝑐�(𝐹). 

Proof. (⟹) Let 𝐹 be a subhypermodule of 𝐻. Since 𝐻 is ss-supplemented, 
𝐹 has an ss-supplement 𝑇 in 𝐻. Say 𝑉 = 𝐹 ∩ 𝑇. Since 𝑇 is an ss-supplement of 
𝐹 in 𝐻, we obtain that 𝑉 ⊆ 𝑆𝑜𝑐�(𝑇) ⊆ 𝑆𝑜𝑐�(𝐹). Applying Lemma 2.11 of 
(Talaee, 2013), we have 𝐹 = 𝐹 ∩ 𝐹 = 𝐹 ∩ (𝑈 + 𝑇) = 𝑈 + 𝐹 ∩ 𝑇 = 𝑈 + 𝑉. By 
Lemma 4.15, 𝑈 is ss-supplemented.      

(⟸) Let 𝐹 be a subhypermodule of 𝐻. By the hypothesis, there exist 
subhypermodules 𝑈 and 𝑉 of 𝐻 such that 𝐹 = 𝑈 + 𝑉, 𝑈 is ss-supplemented and 
𝑉 ⊆ 𝑆𝑜𝑐�(𝐹). By Proposition 4.10, 𝐹 is ss-supplemented. Hence 𝐹 is amply ss-
supplemented by Proposition 4.14.                         ∎ 

Corollary 4.17 The following statements are equivalent for a Krasner 
hypermodule 𝐻.  

1. 𝐻 is amply ss-supplemented, 
2. Every subhypermodule of 𝐻 is ss-supplemented, 
3. Every subhypermodule of 𝐻 is amply ss-supplemented. 

We call a Krasner hypermodule 𝐻 “normal 𝜋-projective” if whenever 𝐹 and 
𝐿 subhypermodules of 𝐻 such that 𝐻 = 𝐹 + 𝐿, there exists a strong 
endomorphism 𝛼 of 𝐻 such that 𝛼(𝐻) ≤ 𝐹 and (1 − 𝛼)(𝐻) ≤ 𝑉. Using the 
definition normal projective hypermodule in (Ameri & Shojaei, 2020), it is 
obtained that every normal projective module is normal π-projective.  
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We will show that the concepts of ss-supplemented Krasner hypermodules 
and amply ss-supplemented Krasner hypermodules have the same structure 
thanks to notion of normal π-projectively. 

Proposition 4.18 Let 𝐻 be a normal 𝜋-projective ss-supplemented Krasner 
hypermodule. Then 𝐻 is amply ss-supplemented. 

Proof. Let 𝐹 and 𝐿 be subhypermodules of 𝐻 such that 𝐻 = 𝐹 + 𝐿. By the 
hypothesis, there exists a strong endomorphism 𝛼 of 𝐻 such that 𝛼(𝐻) ≤ 𝐹 and 
(1 − 𝛼)(𝐻) ≤ 𝐿. Note that (1 − 𝛼)(𝐹) ≤ 𝐹. Let 𝐿m be an ss-supplement of 𝐹 in 
𝐻. Then 𝐻 = 𝛼(𝐻) + (1 − 𝛼)(𝐻) = 𝛼(𝐻) + (1 − 𝛼)(𝐹 + 𝐿m) ≤ 𝐹 + (1 −
𝛼)(𝐿m), so that 𝐻 = 𝐹 + (1 − 𝛼)(𝐿m). Note that (1 − 𝛼)(𝐿m) ≤ 𝐿. Let 𝑥 ∈ 𝐹 ∩
(1 − 𝛼)(𝐿m). Then,  𝑥 ∈ 𝐹 and 

𝑥 = (1 − 𝛼)(𝑎) = 𝑎 − 𝛼(𝑎) 

for some 𝑎 ∈ 𝐿m. It follows from 𝑎 = 𝑥 + 𝛼(𝑎) ∈ 𝐹 that  𝑥 ∈ (1 − 𝛼)(𝐹 ∩
𝐿m). Since 𝐹 ∩ 𝐿m ≪ 𝐿m 

𝐹 ∩ (1 − 𝛼)(𝐿m) = (1 − 𝛼)(𝐹 ∩ 𝐿m) ≪ (1 − 𝛼)(𝐿m) 

by Proposition 2.6 of (Talaee, 2013). Since 𝐹 ∩ (1 − 𝛼)(𝐿m) = (1 −
𝛼)(𝐹 ∩ 𝐿m) is semisimple, (1 − 𝛼)(𝐿m) is an ss-supplement of 𝐹 in 𝐻. Thus, 𝐻 
is amply ss- supplement.                                                                                                            ∎ 

Corollary 4.19 Any subhypermodule of a normal projective ss-
supplemented Krasner hypermodule is ss-supplemented. 

Proposition 4.20 Let 𝐻 be a normal projective hypermodule. Then 𝐻 is ss-
supplemented if and only if it is supplemented and 𝑅𝑎𝑑(𝐻) ⊆ 𝑆𝑜𝑐(𝐻).  

Proof. Since every normal projective hypermodule has small radical, the 
proof follows from Theorem 4.8.                                                                          ∎ 

 

5. CONCLUSION 

The aim of this book chapter is to reveal the existence of the concept of ss-
supplemented Krasner hypermodule over a Krasner hyperring 𝑅. In our study, 
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firstly the concept of strong local Krasner hypermodule, which has an important 
place in the definition of ss-supplemented Krasner hypermodules, was 
introduced as a strong notion of supplemented Krasner hypermodule. The 
concepts of ss-supplemented Krasner hypermodules and amply ss-supplemented 
Krasner hypermodules were introduced. Every strongly local Krasner 
hypermodule is proved to be an ss-supplemented Krasner hypermodule. An 
example of a module that is amply supplenmented but not amply ss-
supplemented Krasner hypermodule is given. It has been shown that π-projective 
ss-supplemented Krasner hypermodules are ss-supplemented Krasner 
hypermodules. Our results specialized some known results on (Hamzekolaee et 
al., 2021) and generalize of the notion of ss-supplemented modules in (Kaynar 
et al., 2020). 
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Chapter 4 

 
COMPACT EMBEDDING AND INCLUSION 

THEOREMS FOR WEIGHTED FUNCTION SPACES 
WITH WAVELET TRANSFORM  

Assoc. Prof. Dr. Öznur KULAK 

Department of Mathematics, Amasya University 

 

1. INTRODUCTION 

Wavelet theory is very popular topic and an alternative to time-frequency 
analysis. Many researchers study on wavelet theory (Daubechies, 1992; 
Gröchenig, 2001; Mallat, 1998). The parameters in wavelet theory are “time” 𝑥 

and “scale” 𝑠. “Dilation operator” 𝐷$ is given by 𝐷$𝑓(𝑡) = |𝑠|+
,
-𝑓 ./

$
0 for all 

𝑡 ∈ ℝ3, 0 ≠ 𝑠 ∈ ℝ. It preserves the shape of 𝑓:ℝ3 → ℂ, but it changes the scale. 
“The continuous wavelet transform” of a function 𝑓 with respect to wavelet 𝑔 is 
defined by 

𝑊;𝑓(𝑥, 𝑠) = |𝑠|+
3
= > 𝑓(𝑡)
ℝ,

𝑔 ?
𝑡 − 𝑥
𝑠 A

BBBBBBBBBBBB
𝑑𝑡 

for 𝑥 ∈ ℝ3 and 0 ≠ 𝑠 ∈ ℝ (Gröchenig, 2001). The Wavelet transform is 
written as convolution 𝑊;𝑓(𝑥, 𝑠) = 𝑓 ∗ 𝐷$𝑔∗(𝑥), where 𝑔∗(𝑡) = 𝑔(−𝑡)BBBBBBBB. Also it 
is known that	𝑊;(𝑇G𝑓) = 𝑇(G,H)𝑊;𝑓 (Kulak & Gürkanlı, 2011). For 	

𝑔I, 𝑔= ∈ 𝐿=Kℝ3L, 
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>
M𝑔I(𝑠𝜔)O 𝑔=(𝑠𝜔)O M

𝑠
𝑑𝑠

P

H

< ∞ 

and 

>
𝑔I(𝑠𝜔)OBBBBBBBBB𝑔=(𝑠𝜔)O

𝑠
𝑑𝑠

P

H

= 𝐾	(independent	of		𝜔) 

is called the “wavelet admissibility condition” (Daubechies, 1992; 
Gröchenig, 2001). If 𝑔I, 𝑔= ∈ 𝐿=Kℝ𝒅L satisfy the admissibility condition, then  

> > 𝑊;]𝑓I(𝑥, 𝑠)𝑊;-𝑓=(𝑥, 𝑠)BBBBBBBBBBBBBB 𝑑𝑥𝑑𝑠
𝑠3^Iℝ𝒅

P

H
= 𝐾〈𝑓I, 𝑓=〉 

for all 𝑓I, 𝑓= ∈ 𝐿=Kℝ3L (Daubechies, 1992; Gröchenig, 2001). If 

𝑔I, 𝑔= ∈ 𝐿=Kℝ3L satisfy admissibility condition, then 𝑓 ∈ 𝐿=Kℝ3L is 
reconstructed from it’s the wavelet transform by 

𝑓 =
1
𝐾
> > 𝑊;]𝑓(𝑥, 𝑠)𝑇b𝐷$

P

Hℝ𝒅
𝑔=
𝑑𝑥𝑑𝑠
𝑠3^I

 

(Daubechies, 1992; Gröchenig, 2001). In this paper the “weight function ω” 
is positive real valued, measurable and locally bounded on ℝ3 which satisfies  

𝜔(𝑥) ≥ 1,𝜔(𝑥 + 𝑦) ≤ 𝜔(𝑥)𝜔(𝑦) 

for all 𝑥, 𝑦 ∈ ℝ3 (Reiter, 1968). A weight 𝜔(𝑥) = (1 + |𝑥|)g is called 
“weight of polynomial type” such that 𝑥 ∈ ℝ3 and 𝑎 ≥ 0. If the weights 𝜔I and 
𝜔= satisfy the condition 𝜔I(𝑥) ≤ 𝐶𝜔=(𝑥), (𝐶 > 0) for all 𝑥 ∈ ℝ3, we denote 
with this symbol 𝜔I ≺ 	𝜔=. Also if the weight functions 𝜔I and 𝜔= are 
equivalent, we write that 𝜔I ≈ 𝜔= if and only if 𝜔I ≺ 	𝜔= and 𝜔= ≺ 	𝜔I.  

The function 

𝜆n(𝑦) = 𝜔K{𝑥 ∈ ℝ3: |𝑓(𝑥)| > 𝑦}L = > 𝜔(𝑥)𝑑𝑥
qb∈ℝ,:|n(b)|rst
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is said that “distribution function”, (Blozinski, 1972; Hunt, 1966; Hunt & 
Kurtz, 1983). The “rearangement function” is given by 

𝑓∗(𝑡) = 𝑖𝑛𝑓q𝑦 > 0: 𝜆n(𝑦) ≤ 𝑡t = 𝑠𝑢𝑝q𝑦 > 0: 𝜆n(𝑦) > 𝑡t 

for 𝑡 ≥ 0 (Blozinski, 1972; Hunt, 1966; Hunt & Kurtz, 1983). Also, the 
“average function” is defined by 

𝑓∗∗(𝑡) =
1
𝑡
>𝑓∗(𝑠)𝑑𝑠
/

H

 

for 𝑡 > 0 (Blozinski, 1972; Hunt, 1966; Hunt & Kurtz, 1983). The 
“weighted Lorentz space 𝐿(𝑝, 𝑞, 𝜔𝑑𝜇)Kℝ3L” is a vector space of measurable 

functions 𝑓 on ℝ𝒅 such that ‖𝑓‖|},~∗ < ∞ , where 

‖𝑓‖|},~∗ = ?}| ∫ 𝑡
�
�+IK𝑓∗(𝑡)L}𝑑𝑡P

H A
]
�
, if  0 < 𝑝, 𝑞 < ∞ 

‖𝑓‖|},~∗ = sup
/rH

𝑡
]
�𝑓∗(𝑡), if  0 < 𝑝 < 𝑞 = ∞. 

This space is a normed space with the following norm by (Blozinski, 1972; 
Hunt, 1966; Hunt & Kurtz, 1983; Duyar & Gürkanlı, 2003) 

‖𝑓‖|},~ = ?}| ∫ 𝑡
�
�+IK𝑓∗∗(𝑡)L}𝑑𝑡P

H A
]
�
, if  0 < 𝑝, 𝑞 < ∞ 

‖𝑓‖|},~ = sup
/rH

𝑡
]
�𝑓∗(𝑡), if  0 < 𝑝 < 𝑞 = ∞. 

 

2. THE SPACE 𝑳𝒔(𝑾)𝝎𝟏,𝝎𝟐
𝒑,𝒒,𝒓 Kℝ𝒅L 

In this chapter, we assume that the scales of wavelet transform is fixed. The 
space 𝐿$(𝑊)~],~-

|,},� Kℝ3L is the vector space of functions 𝑓 ∈ 𝐿~]
| Kℝ3L  such that 

their wavelet transforms 𝑊;𝑓 in 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L. 
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Definition 2.1 Let 1 ≤ 𝑝, 𝑞, 𝑟 < ∞ and 𝜔I, 𝜔= be weight functions on ℝ3. 
Assume that 0 ≠ 𝑔 ∈ 𝑆Kℝ3L which denotes space of complex-valued 

continuous functions on ℝ3 rapidly decreasing at infinity. For 𝑠 ∈ ℝ^, we set 

𝐿$(𝑊)~],~-
|,},� Kℝ3L = q𝑓 ∈ 𝐿~]

| Kℝ3L:	𝑊;𝑓 ∈ 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3Lt. 

The space 𝐿$(𝑊)~],~-
|,},� Kℝ3L is a normed Banach space with this norm  

‖𝑓‖��(�)�],�-
�,�,� = ‖𝑓‖|,~] + �𝑊;𝑓�}�,~-. 

Theorem 2.2 a) The space 𝐶�PKℝ3L which denotes space of infinitely 

differentiable complex-valued functions with compact supported on ℝ3, is dense 
in 𝐿$(𝑊)~],~-

|,},� Kℝ3L. 

b) Assume that 𝜔= is weight function of polynomial type. Then 
𝐿$(𝑊)~],~-

|,},� Kℝ3L is dense in 𝐿~]
| Kℝ3L.  

Proof. a) For arbitrary ℎ ∈ 𝐶�PKℝ3L, we have ℎ ∈ 𝐿~]
| Kℝ3L. It's known that 

𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L is a Banach module over 𝐿~-
I Kℝ3L (Duyar & Gürkanlı, 

2003). Then 

�𝑊;ℎ�}�,~- =
‖ℎ ∗ 𝐷$𝑔∗‖}�,~- ≤ ‖ℎ‖}�,~-‖𝐷$𝑔

∗‖I,~- < ∞ 

and 𝑊;ℎ ∈ 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L is written. So we have ℎ ∈

𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L. That means 𝐶�PKℝ3L ⊂ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. Now let be ℎ ∈

𝐿$(𝑊)~],~-
|,},� Kℝ3L. So ℎ ∈ 𝐿~]

| Kℝ3L and 𝑊;ℎ ∈ 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L. Also since 

𝐶�PKℝ3L is dense in these spaces, there exist (ℎ�)�∈ℕ, (𝑓�)�∈ℕ ⊂ 𝐶�PKℝ3L such 
that 

‖ℎ� − ℎ‖|,~] → 0, �𝑓� −𝑊;ℎ�}�,~- → 0. 

By using the subsequence property, we find a subsequence 

K𝑓��L��∈ℕ ⊂ 𝐶�PKℝ3L 

such that 𝑓�� = 𝑊;ℎ�� and �𝑓�� −𝑊;ℎ�}�,~- → 0, where 
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Kℎ��L��∈ℕ ⊂
(ℎ�)�∈ℕ. 

Therefore �ℎ�� − 𝑓���(�)�],�-
�,�,� → 0 and Kℎ��L��∈ℕ ⊂ 𝐶�PKℝ3L. Hence 

𝐶�P(ℝ3)BBBBBBBBBBB = 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 

b) Since ω₂ is weight of polynomial type, we have that 𝐷$𝑔∗ ∈ 𝐿~-
I Kℝ3L. 

Let be 𝑓 ∈ 𝐶�Kℝ3L ⊂ 𝐿~]
| Kℝ3L. Then we write  

�𝑊;𝑓�}�,~- =
‖𝑓 ∗ 𝐷$𝑔∗‖}�,~- ≤ ‖𝑓‖}�,~-‖𝐷$𝑔

∗‖I,~- < ∞. 

Hence 𝐶�Kℝ3L ⊂ 𝐿$(𝑊)~],~-
|,},� Kℝ3L ⊂ 𝐿~]

| Kℝ3L. Since 𝐶�(ℝ3)BBBBBBBBB =

𝐿~]
| Kℝ3L, we find  𝐿$(𝑊)~],~-

|,},� (ℝ3)BBBBBBBBBBBBBBBBBBBBB = 𝐿~]
| Kℝ3L. 

Theorem 2.3 a) 𝐿$(𝑊)~],~-
|,},� Kℝ3L is invariant under translations. 

b) The mapping 𝑓 → 𝑇G𝑓 is continuous from 𝐿$(𝑊)~],~-
|,},� Kℝ3L into 

𝐿$(𝑊)~],~-
|,},� Kℝ3L for every 𝑓 ∈ 𝐿$(𝑊)~],~-

|,},� Kℝ3L and fixed 𝑧 ∈ ℝ3. 

c) The mapping 𝑧 → 𝑇G𝑓 is continuous from ℝ3 into 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 

Proof. a) Take any 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. So  

𝑓 ∈ 𝐿~]
| Kℝ3L	and	𝑊;𝑓 ∈ 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L. 

Since ‖𝑇G𝑓‖|,~] ≤ 𝜔I(𝑧)‖𝑓‖|,~], we write 𝑇G𝑓 ∈ 𝐿~]
| Kℝ3L for all 𝑧 ∈ ℝ3 

(Fischer et al., 1996). Also by using the equality 𝑊;(𝑇G𝑓) = 𝑇(G,H)𝑊;𝑓, we find 
that 

�𝑊;(𝑇G𝑓)�}�,~- ≤ 𝜔=(𝑧)
]
��𝑊;𝑓�}�,~-                                                      (4.1) 

for all 𝑧 ∈ ℝ3 (Duyar & Gürkanlı, 2003). Then we have 

‖𝑇G𝑓‖��(�)�],�-
�,�,� ≤ 𝜔I(𝑧)‖𝑓‖|,~] + 𝜔=(𝑧)

I
}�𝑊;𝑓�}�,~- 

and so 𝑇G𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 
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b) Take arbitrary 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L and 𝜀 > 0. Let 𝛿 > 0 such that 

𝛿 =
𝜀

𝜔I(𝑧) + 𝜔=(𝑧)
I
}
. 

If ‖𝑓‖��(�)�],�-
�,�,� < 𝛿, then ‖𝑓‖|,~] ≤ ‖𝑓‖��(�)�],�-

�,�,� < 𝛿 and 

‖𝑓‖}�,~- ≤ ‖𝑓‖��(�)�],�-
�,�,� < 𝛿. 

Also since �𝑊;(𝑇G𝑓)�}�,~- ≤ 𝜔=(𝑧)
]
��𝑊;𝑓�}�,~-, we find that 

‖𝑇G𝑓‖��(�)�],�-
�,�,� ≤ 𝜔I(𝑧)‖𝑓‖|,~] + 𝜔=(𝑧)

I
}�𝑊;𝑓�}�,~- 

≤ 𝛿 ¡𝜔I(𝑧) + 𝜔=(𝑧)
I
}¢ < 𝜀. 

c) Given 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. We know that the translation mapping is 

continuous from ℝ3 into 𝐿~]
| Kℝ3L (Fischer et al., 1996). For any  𝜀 > 0, if 

‖𝑢 − 𝑣‖ < 𝛿I for 𝑢, 𝑣 ∈ ℝ3, then there exists 𝛿I > 0 such that 

‖𝑇¤𝑓 − 𝑇¥𝑓‖|,~] <
𝜀
2
	. 

Also since the translation mapping is continuous from ℝ3 into 
𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L (Duyar & Gürkanlı, 2003), for same 𝜀 > 0, there exists  𝛿= >

0 such that if ‖𝑢 − 𝑣‖ < 𝛿= for all 𝑢, 𝑣 ∈ ℝ3, then 

�𝑊;(𝑇¤𝑓 − 𝑇¥𝑓)�}�,~- = �𝑊;(𝑇¤𝑓) −𝑊;(𝑇¥𝑓)�}�,~- 

= �𝑇(¤,H)𝑊;𝑓 − 𝑇(¥,H)𝑊;𝑓�}�,~- <
𝜀
2
	. 

Let 𝛿 = 𝑚𝑖𝑛{𝛿₁, 𝛿₂}. If ‖𝑢 − 𝑣‖ < 𝛿=, then 

‖𝑇¤𝑓 − 𝑇¥𝑓‖��(�)�],�-
�,�,�  

= ‖𝑇¤𝑓 − 𝑇¥𝑓‖|,~] + �𝑊;(𝑇¤𝑓 − 𝑇¥𝑓)�}�,~- <
𝜀
2
+
𝜀
2
= 𝜀																∎ 
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Theorem 2.4 𝐿$(𝑊)~],~-
|,},� Kℝ3L is a Banach function space. 

Proof. Let be 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. There exists 𝐶 > 0 such that 

> |𝑓(𝑥)|𝑑𝑥
ℝ,

≤ 𝐶‖𝑓‖| 

where a compact subset 𝐾 ⊂ ℝ3. Then 

> |𝑓(𝑥)|𝑑𝑥
ℝ,

≤ 𝐶 «‖𝑓‖|,~] + �𝑊;𝑓�}�,~-¬ = 𝐶‖𝑓‖��(�)�],�-
�,�,� . 

Also if we use that 𝐿$(𝑊)~],~-
|,},� Kℝ3L is a Banach space and the last 

inequality, we find that this space is a Banach function space.                                      ∎ 

Theorem 2.5 Let 𝜔= ≤ 	𝜔I. The space 𝐿$(𝑊)~],~-
|,},� Kℝ3L is an essential 

Banach module over 𝐿~]
I Kℝ3L. 

Proof. Let be 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L and ℎ ∈ 𝐿~]

I Kℝ3L. The we have 

‖𝑓 ∗ ℎ‖|,~] ≤ ‖𝑓‖|,~]‖ℎ‖I,~]                                                                        (4.2) 

and  

.�𝑊;(𝑓 ∗ ℎ)�}�,~- =
‖(𝑓 ∗ ℎ) ∗ 𝐷$𝑔∗‖}�,~- 

≤ ‖ℎ‖I,~-‖𝑓 ∗ 𝐷$𝑔
∗‖}�,~- ≤ ‖ℎ‖I,~]�𝑊;𝑓�}�,~-.                                        (4.3) 

So by (4.2) and (4.3), we have  

‖𝑓 ∗ ℎ‖��(�)�],�-
�,�,� = ‖𝑓 ∗ ℎ‖|,~] + �𝑊;(𝑓 ∗ ℎ)�}�,~- 

≤ ‖ℎ‖I,~] «‖𝑓‖|,~] + �𝑊;𝑓�}�,~- =
‖ℎ‖I,~]‖𝑓‖��(�)�],�-

�,�,� ¬. 

Therefore we find that 𝐿$(𝑊)~],~-
|,},� Kℝ3L is a Banach module over 𝐿~]

I Kℝ3L 
(Larsen, 1973; Liu & Rooij, 1969). Now we show that 

𝐿~]
I Kℝ3L ∗ 𝐿$(𝑊)~],~-

|,},� Kℝ3L = 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 
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It is known that 𝐿~]
I Kℝ3L has a bounded approximate identity (Gaudry, 

1969). Let 𝑈 be neighbourhood of the unit element of ℝ3. We can choose an 
approximate identity (𝑒¯)¯∈° which is positive bounded and 𝑠𝑢𝑝𝑝𝑒¯ ⊂ 𝑈, 
‖𝑒¯‖I = 1 for all 𝛼 ∈ 𝐼. Take ℎ ∈ 𝐿$(𝑊)~],~-

|,},� Kℝ3L. Then 

�𝑒¯³ ∗ ℎ − ℎ���(�)�],�-
�,�,�  

= ´> 𝑒¯³(𝑧)
ℝ,

𝑇Gℎ(𝑦)𝑑𝑧 −> 𝑒¯³(𝑧)
ℝ,

ℎ(𝑦)𝑑𝑧´
��(�)�],�-

�,�,�
 

= ´> 𝑒¯³(𝑧)
ℝ,

K𝑇Gℎ(𝑦) − ℎ(𝑦)L𝑑𝑧´
��(�)�],�-

�,�,�
 

≤ ∫ 𝑒¯³(𝑧)ℝ, ‖𝑇Gℎ − ℎ‖��(�)�],�-
�,�,� 𝑑𝑧. 

where fixed 𝛼H ∈ 𝐼. Since the translation mapping 𝑧 → 𝑇G𝑓 is continious 
from ℝ3 into 𝐿$(𝑊)~],~-

|,},� Kℝ3L by Theorem 2.3, given any 𝜀 > 0, we say that 

‖𝑇Gℎ − ℎ‖��(�)�],�-
�,�,� < 𝜀. 

Therefore we get 

�𝑒¯³ ∗ ℎ − ℎ���(�)�],�-
�,�,� ≤ > 𝑒¯³(𝑧)

ℝ,
𝜀𝑑𝑧 = 𝜀. 

That means 𝐿~]
I Kℝ3L ∗ 𝐿$(𝑊)~],~-

|,},� Kℝ3L = 𝐿$(𝑊)~],~-
|,},� Kℝ3L. Using 

Module Factorization  Theorem (Wang, 1977), we obtain that 𝐿$(𝑊)~],~-
|,},� Kℝ3L 

is an essential Banach module over 𝐿~]
I Kℝ3L. 

Corollary 2.6 Let 𝜔= ≤ 	𝜔I. Assume that (𝑒¯)¯∈°  is an approximate 
identity in 𝐿~]

I Kℝ3L. Then (𝑒¯)¯∈° is an approximate identity of the space 

𝐿$(𝑊)~],~-
|,},� Kℝ3L. 

Proof. From the Theorem 2.5 and (Doran & Wichmann, 1979), the proof is 
easily achieved.                                                                                                     ∎ 
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3. INCLUSION PROPERTIES OF THE SPACE 𝑳𝒔(𝑾)𝝎𝟏,𝝎𝟐
𝒑,𝒒,𝒓 Kℝ𝒅L 

Theorem 3.1 If 𝐿$(𝑊)~],~µ
|,},� Kℝ3L ⊂ 𝐿$(𝑊)~-,~¶

|,},� Kℝ3L, then 

𝐿$(𝑊)~],~µ
|,},� Kℝ3L is a Banach space under the norm  

‖𝑓‖� = ‖𝑓‖��(�)�],�µ
�,�,� + ‖𝑓‖��(�)�-,�¶

�,�,� . 

Proof. Let (𝑓�)�∈ℕ be a Cauchy sequence in K𝐿$(𝑊)~],~µ
|,},� Kℝ3L, ‖. ‖�	L. So 

(𝑓�)�∈ℕ is a Cauchy sequence in the spaces .𝐿$(𝑊)~],~µ
|,},� Kℝ3L, ‖. ‖��(�)�],�µ

�,�,� 	0 

and .𝐿$(𝑊)~-,~¶
|,},� Kℝ3L, ‖. ‖��(�)�-,�¶

�,�,� 	0. Since these spaces are Banach spaces, 

there exist 𝑓 ∈ 𝐿$(𝑊)~-,~¶
|,},� Kℝ3L and ℎ ∈ 𝐿$(𝑊)~],~µ

|,},� Kℝ3L such that 

‖𝑓� − 𝑓‖��(�)�-,�¶
�,�,� → 0, ‖𝑓� − ℎ‖��(�)�],�µ

�,�,� → 0 

From the inequalities ‖. ‖| ≤ ‖. ‖��(�)�-,�¶
�,�,�  and ‖. ‖| ≤ ‖. ‖��(�)�],�µ

�,�,� , we 

have ‖𝑓� − 𝑓‖| → 0, ‖𝑓� − ℎ‖| → 0. So since  

‖𝑓 − ℎ‖| ≤ ‖𝑓� − 𝑓‖| + ‖𝑓� − ℎ‖|, 

we find that ‖𝑓 − ℎ‖| = 0 and 𝑓 = ℎ. Hence  

‖𝑓� − 𝑓‖� → 0 and 𝑓 ∈ K𝐿$(𝑊)~],~µ
|,},� Kℝ3L, ‖. ‖�	L.																																								∎ 

Theorem 3.2 If 𝜔 = 𝑚𝑎𝑥{𝜔I, 𝜔·} and 𝑚 = 𝑚𝑎𝑥{𝜔=, 𝜔¸}, then we have 

𝐿$(𝑊)~],~-
|,},� Kℝ3L⋂𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L = 𝐿$(𝑊)~,º
|,},�Kℝ3L 

Proof. Let 𝑓 ∈ 𝐿$(𝑊)~,º
|,},�Kℝ3L be arbitrary. Then 

‖𝑓‖��(�)�],�-
�,�,� = ‖𝑓‖|,~] + �𝑊;𝑓�}�,~- ≤

‖𝑓‖|,~ + �𝑊;𝑓�}�,º < ∞ 

and so 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. Similarly 𝑓 ∈ 𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L is written. 
Thus we have  

𝐿$(𝑊)~,º
|,},�Kℝ3L ⊂ 𝐿$(𝑊)~],~-

|,},� Kℝ3L⋂𝐿$(𝑊)~µ,~¶
|,},� Kℝ3L.                           (4.4) 
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Conversely let 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L⋂𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L. Since the 

assumption 𝜔 = 𝑚𝑎𝑥{𝜔I, 𝜔·} and 𝑚 = 𝑚𝑎𝑥{𝜔=, 𝜔¸}, we achieve 

𝑓 ∈ 𝐿$(𝑊)~,º
|,},�Kℝ3L. 

So we have 

𝐿$(𝑊)~],~-
|,},� Kℝ3L⋂𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L ⊂ 𝐿$(𝑊)~,º
|,},�Kℝ3L.                           (4.5) 

Hence by (4.4) and (4.5), we get 

𝐿$(𝑊)~],~-
|,},� Kℝ3L⋂𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L = 𝐿$(𝑊)~,º
|,},�Kℝ3L.																∎ 

Theorem 3.3 If 𝜔· ≺ 𝜔I and 𝜔¸ ≺ 𝜔=, then 

𝐿$(𝑊)~],~-
|,},� Kℝ3L ⊂ 𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L 

for all 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 

Proof. Since the assumptions, there exist 𝐶I, 𝐶= > 0 such that 

𝜔I(𝑡) ≤ 𝐶I𝜔·(𝑡) 

and 𝜔¸(𝑡) ≤ 𝐶=𝜔=(𝑡) for all 𝑡, 𝑧 ∈ ℝ3. Let 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. So 

𝑓 ∈ 𝐿~]
| Kℝ3L and 𝑊;𝑓 ∈ 𝐿(𝑞, 𝑟, 𝜔=𝑑𝜇)Kℝ3L. 

Then  

‖𝑓‖|,~µ ≤ 𝐶I‖𝑓‖|,~]	and	�𝑊;𝑓�|,~¶ ≤ 𝐶·�𝑊;𝑓�}�,~-. 

We find 𝑓 ∈ 𝐿$(𝑊)~µ,~¶
|,},� Kℝ3L. Hence we obtain 

𝐿$(𝑊)~],~-
|,},� Kℝ3L ⊂ 𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L.																																		∎ 

 

Theorem 3.4 If Suppose that 𝐿$(𝑊)~],~-
|,},� Kℝ3L ⊂ 𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L. Then 

there exists a 𝐶 > 0 such that 
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‖𝑓‖��(�)�µ,�¶
�,�,� ≤ 𝐶‖𝑓‖��(�)�],�-

�,�,�  

for each 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. 

Proof. If we endow the space 𝐿$(𝑊)~],~-
|,},� Kℝ3L with the norm 

‖𝑓‖� = ‖𝑓‖��(�)�],�-
�,�,� + ‖𝑓‖��(�)µ,�¶

�,�,�  

then the space .𝐿$(𝑊)~],~-
|,},� Kℝ3L, ‖. ‖��(�)�],�-

�,�,� 0 is a Banach space by from 

Theorem 3.1. Also using Closed Graph Theorem, there exists a 𝐶 > 0 such that 

‖𝑓‖��(�)�µ,�¶
�,�,� ≤ 𝐶‖𝑓‖��(�)�],�-

�,�,�  

for each 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L.                                                                           ∎ 

Theorem 3.5 For every 0 ≠ 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L, there exists 𝐶(𝑓) > 0 

such that 

𝐶(𝑓)𝜔I(𝑧) ≤ ‖𝑇G𝑓‖��(�)�],�-
�,�,� ≤ ¡𝜔I(𝑧) + 𝜔=(𝑧)

I
}¢ ‖𝑓‖��(�)�],�-

�,�,�  

Proof. Take any 0 ≠ 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L. There exists 𝐶(𝑓) > 0 such 

that 

𝐶(𝑓)𝜔I(𝑧) ≤ ‖𝑇G𝑓‖|,~] ≤ 𝜔I(𝑧)‖𝑓‖|,~]                                                     (4.6) 

(Feichtinger & Gürkanlı, 1990).                                             

On the other hand, using the inequalities (4.1) and (4.6), we obtain 

𝐶(𝑓)𝜔I(𝑧) ≤ ‖𝑇G𝑓‖|,~] + �𝑊;𝑇G𝑓�}�,~- 

≤ 𝜔I(𝑧)‖𝑓‖|,~] + 𝜔=(𝑧)
I
}�𝑊;𝑓�}�,~- 

≤ 𝜔I(𝑧)‖𝑓‖|,~] + 𝜔=(𝑧)
I
}�𝑊;𝑓�}�,~- 

≤ 𝜔I(𝑧)‖𝑓‖��(�)�],�-
�,�,� + 𝜔=(𝑧)

I
}‖𝑓‖��(�)�],�-

�,�,�  
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= ?𝜔I(𝑧) + 𝜔=(𝑧)
]
�A ‖𝑓‖��(�)�],�-

�,�,� . 

This completes proof.                                                                                      ∎ 

 

4. COMPACT EMBEDDINGS OF THE SPACE 
𝑳𝒔(𝑾)𝝎𝟏,𝝎𝟐

𝒑,𝒒,𝒓 Kℝ𝒅L 

Lemma 4.1 Let (𝑓�)�∈ℕ be a sequence in 𝐿$(𝑊)~],~-
|,},� Kℝ3L. If (𝑓�)�∈ℕ 

converges to zero in 𝐿$(𝑊)~],~-
|,},� Kℝ3L, then 

> 𝑓�(𝑥)𝑘(𝑥)𝑑𝑥
ℝ,

→ 0 

for 𝑛 → ∞ and for all 𝑘 ∈ 𝐶�Kℝ3L. 

Proof. Assume that 𝑘 ∈ 𝐶�Kℝ3L and I
|
+ I

�
= 1. So 

¼∫ 𝑓�(𝑥)𝑘(𝑥)𝑑𝑥ℝ, ¼ ≤ ‖𝑘‖�‖𝑓�‖| ≤ ‖𝑘‖�‖𝑓�‖��(�)�],�-
�,�,�                           (4.7) 

is obtained. From assumption and (4.7), we find 

> 𝑓�(𝑥)𝑘(𝑥)𝑑𝑥
ℝ,

→ 0 

for 𝑛 → ∞ and for all 𝑘 ∈ 𝐶�Kℝ3L. 

In the following theorem, we use the similar technique of proof in (Gürkanlı, 
2008). 

Theorem 4.2 Assume that 𝜔I, 	𝜔= are weight functions of polynomial type 

and 𝑢 is weight function on ℝ3. If 𝑢 ≺ 𝜔I and ¤(b)
~](b)^	~-(b,$)

↛ 0 for 𝑥 → ∞, 

then the embedding of the space 𝐿$(𝑊)~],~-
|,},� Kℝ3L into 𝐿¤

|Kℝ3L is never 
compact. 

Proof. From the assumption 𝑢 ≺ 𝜔I, we say that there exists 𝐶₁ > 0 such 
that 𝑢(𝑥) ≤ 𝐶I𝜔I(𝑥) for all 𝑥 ∈ ℝ3. This implies 
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𝐿$(𝑊)~],~-
|,},� Kℝ3L ⊂ 𝐿¤

|Kℝ3L. 

Suppose that (𝑡�)�∈ℕ is a sequence with 𝑡� → ∞ as 𝑛 → ∞ in ℝ3. Also 

since the assumption ¤(b)
~](b)^	~-(b,$)

 does not tend to zero as 𝑥 → ∞, there exists 

𝛿 > 0 such that ¤(b)
~](b)^	~-(b,$)

≥ 𝛿 > 0 for 𝑥 → ∞. Fixed 𝑓 ∈ 𝐿$(𝑊)~],~-
|,},� Kℝ3L 

and 𝑡H ∈ ℝ^, we define a sequence (𝑓�)�∈ℕ such that 

𝑓� = K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I𝑇/¾𝑓. 

Also Lemma 4.1, we have  

‖𝑓�‖��(�)�],�-
�,�,� = ¿K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L

+I𝑇/¾𝑓¿��(�)�],�-
�,�,�  

= K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I�𝑇/¾𝑓���(�)�],�-

�,�,�  

≤ K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+IK𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L‖𝑓‖��(�)�],�-

�,�,�  

= ‖𝑓‖��(�)�],�-
�,�,� . 

That means this sequence is bounded in 𝐿$(𝑊)~],~-
|,},� Kℝ3L. On the other 

hand, we will show that there wouldn't exist norm convergence subsequence of 
(𝑓�)�∈ℕ in  𝐿¤

|Kℝ3L. Then 

À> 𝑓�(𝑥)𝑘(𝑥)𝑑𝑥
ℝ,

À 

≤
1

𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)
> M𝑇/¾𝑓(𝑥)M|𝑘(𝑥)|𝑑𝑥
ℝ,

 

≤
1

𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)
‖𝑘‖$�𝑇/¾𝑓�| 

= I
~](/¾)^	~-(/¾,/³)

‖𝑘‖$�𝑇/¾𝑓�|                                                                     (4.8) 
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is written where I
|
+ I

�
= 1 for all 𝑘 ∈ 𝐶�Kℝ3L. The last inequality (4.8) 

tends zero for 𝑛 → ∞, then we find  

∫ 𝑓�(𝑥)𝑘(𝑥)𝑑𝑥ℝ, → 0. 

By Lemma 4.1, the only possible limit of (𝑓�)�∈ℕ in  𝐿¤
|Kℝ3L is zero. Using  

�𝑇/¾𝑓�| ≈ 𝑢(𝑡�). 

So there exists 𝐶I, 𝐶= > 0 such that 

𝐶I𝑢(𝑡�) ≤ �𝑇/¾𝑓�|,¤ ≤ 𝐶=𝑢(𝑡�).                                                                    (4.9) 

Using the inequality (4.9), we have  

‖𝑓�‖|,¤ = ¿K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I𝑇/¾𝑓¿|,¤

 

= K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I�𝑇/¾𝑓�|,¤ 

≥ 𝐶I𝑢(𝑡�)K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I.                                                            (4.10) 

Also since  

¤(/¾)
~](/¾)^	~-(/¾,$)

≥ 𝛿 > 0  

for all 𝑡�, and from the inequality (4.10), we obtain  

‖𝑓�‖|,¤ ≥ 𝐶I𝑢(𝑡�)K𝜔I(𝑡�) + 	𝜔=(𝑡�, 𝑡H)L
+I > 𝛿𝐶I > 0.	 

Therefore we say that there would not be possible to find norm convergent 
subsequence of  (𝑓�)�∈ℕ in  𝐿¤

|Kℝ3L. The proof is completed.                            ∎ 

Theorem 4.3 Assume that 𝜔I, 	𝜔= are weight functions of polynomial type 
and 𝜔·, 	𝜔¸ are any weight functions. If 𝜔· ≺ 𝜔I, 	𝜔¸ ≺ 	𝜔= and 

𝜔·(𝑥)
𝜔I(𝑥) + 	𝜔=(𝑥, 𝑠)

↛ 0 
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for 𝑥 → ∞, then the embedding of the space 𝐿$(𝑊)~],~-
|,},� Kℝ3L into 

𝐿$(𝑊)~µ,~¶
|,},� Kℝ3L is never compact. 

Proof. From the assumptions 𝜔· ≺ 𝜔I and 	𝜔¸ ≺ 	𝜔= and by from Theorem 
3.3, we have that 𝐿$(𝑊)~],~-

|,},� Kℝ3L ⊂ 𝐿$(𝑊)~µ,~¶
|,},� Kℝ3L. The unit map is a 

continuous from 𝐿$(𝑊)~],~-
|,},� Kℝ3L into 𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L. Suppose that the unit 

map is compact. Let (𝑓�)�∈ℕ in 𝐿$(𝑊)~],~-
|,},� Kℝ3L be an arbitrary bounded 

sequence. If there exists convergent subsequence of (𝑓�)�∈ℕ  in 
𝐿$(𝑊)~µ,~¶

|,},� Kℝ3L, this sequence also converges in 𝐿~µ
| Kℝ3L. But this is not 

possible by Theorem 4.2. This completes the proof. 

 

5. CONCLUSION 

The wavelet transform acting like a microscope gives us local information 
of signals at any time and any size. Thanks to this property of the wavelet 
transform, wavelet theory is an important field for harmonic analysis, applied 
mathematics, signal analysis.  In this chapter, using the wavelet transform, the 
space 𝐿$(𝑊)~],~-

|,},� Kℝ3L is defined and some fundamental properties are 
considered. Then the inclusion and compact embeddings theorems are proved. 
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BILINEAR MULTIPLIERS OF FUNCTION SPACES 

WITH WIGNER TRANSFORM 
Assoc. Prof. Dr. Öznur KULAK 
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1. INTRODUCTION 

Throughout this work 𝑆(ℝ) denotes the space of complex-valued 
continuous functions on ℝ rapidly decreasing at infinity, respectively. Assume 
that 𝑓 is a complex-valued measurable function on ℝ. The space L'(ℝ), (1≤
𝑝 ≤ ∞) denotes the usual “Lebesgue space” (Reiter, 1968). A continuous and 
measurable function 𝜔 satisfying 1 ≤ 𝜔(𝑥) and 𝜔(𝑥 + 𝑦) ≤ 𝜔(𝑥)𝜔(𝑦) for 
𝑥, 𝑦 ∈ ℝ will be called a “weight function” on ℝ. Let 𝑎 ≥ 0. The function 

𝜔(𝑥, 𝑦) = (1 + |𝑥| + |𝑦|)7 

which is defined on ℝ8 is called “weight of polynomial” type (Gasquet & 
Witomski, 1999). For 1≤ 𝑝 ≤ ∞, the weighted “Lebesgue space” is defined by 
𝐿:
; (ℝ) = {𝑓: 𝑓𝜔 ∈ 𝐿;(ℝ)} (Reiter, 1968). The translation, character and 

dilation operators 𝑇7, 𝑀7 and 𝐷B are given by  

𝑇7𝑓(𝑥) = 𝑓(𝑥 − 𝑎), 𝑀7𝑓(𝑥) = 𝑒8EFG7𝑓(𝑥),  𝐷B𝑓(𝑥) = |𝑠|I
J
K𝑓 LG

B
M 

respectively for 𝑎, 𝑥 ∈ ℝ, 𝑠 ≠ 0. For 𝑓 ∈ 𝐿O(ℝ), the Fourier transform is 
denoted by 𝑓P. Also the Fourier transform of the dilation operator is 

𝐷B𝑓Q (𝜉) = 𝐷BSJ𝑓P(𝜉) 
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for all 𝜉 ∈ ℝ (Gröchenig, 2001). The set 𝑀(ℝ) denotes the space of 
bounded regular Borel measures. Also we denote by 𝑀(𝜔) the space of 𝜇 ∈

𝑀(ℝ) such that ‖𝜇‖: = ∫ 𝜔𝑑|𝜇|ℝ < ∞. For 𝜇 ∈ 𝑀(𝜔), the “Fourier-Stieljes 

transform” is denoted by �̂� (Rudin, 1962).  

Let 0 ≠ 𝑔 ∈ 𝐿8(ℝ) be window function. The “Gabor transform” (short-
time Fourier transform) of a function 𝑓 ∈ 𝐿8(ℝ) with respect to 𝑔 is given by  

𝑉\𝑓(𝑥, 𝑤) = ^ 𝑓(𝑦)𝑔(𝑦 − 𝑥)____________𝑒I8EF`a𝑑𝑦
ℝ

 

for 𝑥,𝑤 ∈ ℝ (Gröchenig, 2001). For 𝜏 ∈ (0,1), the “𝜏 −short-time Fourier 

transform” of 𝑓 with respect to 𝑔 is given by 𝑉\c𝑓(𝑥, 𝑤) = 𝑉\𝑓 L
G
OIc

, a
c
M for 

𝑥,𝑤 ∈ ℝ (Boggiatto et al., 2007:235-249). 

The “cross-Wigner distribution” of 𝑓, 𝑔 ∈ 𝐿8(ℝ) is defined by 

𝑊(𝑓, 𝑔)(𝑥, 𝑤) = ^ 𝑓 L𝑥 +
𝑦
2
M𝑔 L𝑥 −

𝑦
2
M

_____________
𝑒I8EF`a𝑑𝑦

ℝ

 

for 𝑥,𝑤 ∈ ℝ. The cross-Wigner distribution which is a quadratic time-
frequency representation, gives us information about the amount of signal energy 
during the any time period the energy density in time-frequency plane. For 𝜏 ∈
(0,1), the 𝜏 −Wigner transform is defined by 

𝑊c(𝑓, 𝑔)(𝑥, 𝑤) = ^ 𝑓(𝑥 + 𝜏𝑦)𝑔(𝑥 − (1 − 𝜏)𝑦)_____________________𝑒I8EF`a𝑑𝑦
ℝ

 

for 𝑥,𝑤 ∈ ℝ (Gröchenig, 2001). Also the τ −Wigner transform has the 
following relation with the τ −short-time Fourier transform (Kulak & 
Ömerbeyoğlu, 2021:188-200). 

𝑊c(𝑓, 𝑔)(𝑥, 𝑤) = 𝑒
8EFGa
c

1
g𝜏(1 − 𝜏)

𝑉h i
iSJ

\
c 𝑓(𝑥, 𝑤) 
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Let 𝜔, 𝜗 be weight functions and let be 1 ≤ 𝑝, 𝑟 < ∞, 𝜏 ∈ (0,1). The space 
𝐶𝑊:,m

;,n,c(ℝ) consists of all 𝑓 ∈ 𝐿:
; (ℝ) such that their τ −Wigner transforms 

𝑊c(𝑓, . ) are in 𝐿mn (ℝ8). This space is equipped with sum norm 

‖𝑓‖pqr,s
t,u,i = ‖𝑓‖;,: + ‖𝑊c(𝑓, . )‖n,m. 

The space 𝐶𝑊:,m
;,n,c(ℝ) is a Banach space with this norm (Kulak & 

Ömerbeyoğlu, 2021:188-200). 

 

2. THE BILINEAR MULTIPLIERS THEORY FOR 
FUNCTION SPACES WITH WIGNER TRANSFORM 

Let 1 ≤ 𝑝O, 𝑟O, 𝑝8, 𝑟8𝑝v, 𝑟v < ∞, 𝜏O, 𝜏8,𝜏v ∈ (0,1) and 𝜔O, 𝜗O, 𝜔8, 𝜗8 𝜔v, 𝜗v 
be weight functions. Suppose that 𝜔O, 𝜗O, 𝜔8, 𝜗8 are weight functions of 
polynomial type and 𝑚(𝜉, 𝜂) is a bounded, measurable function on ℝ8. Define  

𝐵z(𝑓, 𝑔)(𝑥) = ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑚(𝜉, 𝜂)𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

for all 𝑓, 𝑔 ∈ 𝑆(ℝ). m EK3 said to be a bilinear multiplier on ℝ of type 

𝐶𝑊�𝑝O, 𝑟O,𝜔O, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔8, 𝜗8	, 𝜏8,; 𝑝v, 𝑟v, 𝜔v, 𝜗v, 𝜏v� 

(shortly 𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�), if there exists C>0 such that 

‖𝐵z(𝑓, 𝑔)‖pqr�,s�
t�,u�,i� ≤ 𝐶‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK  

for all 𝑓, 𝑔 ∈ 𝑆(ℝ). That means 𝐵z extends to a bounded bilinear operator 
from 

𝐶𝑊:J,mJ
;J,nJ,cJ(ℝ) × 𝐶𝑊:K,mK

;K,nK,cK(ℝ) to 𝐶𝑊:�,m�
;�,n�,c�(ℝ). 

 𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔O, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔8, 𝜗8	, 𝜏8,; 𝑝v, 𝑟v, 𝜔v, 𝜗v, 𝜏v�� (shortly 

𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��) denotes the space of all bilinear multipliers of type 

𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�). We denote by 
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‖𝑚‖pq�;�,n�,:�,m�,c�� = ‖𝐵z‖. 

In this work, we will assume that 𝜔O, 𝜗O, 𝜔8, 𝜗8 are weight functions of 
polynomial type. 

 

Lemma 2.1 (Hölder Type Inequality for The Space 𝐶𝑊:,m
;,n,c(ℝ)) 

Assume that 𝑘O and 𝑘8 are constant numbers such that 𝜔v ≈ 𝑘O, 𝜗v ≈ 𝑘8. 

If O
;J
+ O

;K
= O

8
, then there exists 𝐶 > 0 such that  

‖𝑓𝑔‖pqr�,s�
K,K,i� ≤ 𝐶‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK  

for all 𝑓 ∈ 𝐶𝑊:J,mJ
;J,nJ,cJ(ℝ) and 𝑔 ∈ 𝐶𝑊:K,mK

;K,nK,cK(ℝ). 

Proof. Let 𝑓 ∈ 𝐶𝑊:J,mJ
;J,nJ,cJ(ℝ)  and 𝑔 ∈ 𝐶𝑊:K,mK

;K,nK,cK(ℝ). Take any ℎ ∈ 𝑆(ℝ). 

The following equation is known that 

𝑊c(𝑓𝑔, ℎ)(𝑥, 𝑤) =
O

gc(OIc)
𝑒
K����

i 𝑉h i
iSJ

�
c (𝑓𝑔)(𝑥, 𝑤), (0 < 𝜏 < 1). 

Then from the Hölder inequality, we get 

								‖𝑓𝑔‖pqr�,s�
K,K,i� = ‖𝑓𝑔‖8,:� + ‖𝑊c(𝑓𝑔, ℎ)‖8,m� 

		≈ ‖𝑓𝑔‖8 + ‖𝑊c(𝑓𝑔, ℎ)‖8 

≤ ‖𝑓‖;J‖𝑔‖;K +
O

gc(OIc)
�𝑉h i

iSJ
�

c (𝑓𝑔)�
8
            

=   ‖𝑓‖;J‖𝑔‖;K +
O

gc(OIc)
�𝑉h i

iSJ
�(𝑓𝑔) L

G
OIc

, a
c
M�

8
                   

= ‖𝑓‖;J‖𝑔‖;K + �𝑉h i
iSJ

�(𝑓𝑔)�
8
.                                               (5.1) 

Moreover since the Gabor transform is an isometry from 𝐿8 �ℝ � to 

𝐿8 (ℝ8) (Gröchenig, 2001), using the inequality (5.1) we achieve  
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‖𝑓𝑔‖pqr�,s�
K,K,i� ≤ ‖𝑓‖;J‖𝑔‖;K + ‖𝑓𝑔‖8 �𝐷 c

cIO
ℎ�

8
 

≤ ‖𝑓‖;J‖𝑔‖;K + ‖𝑓‖;J‖𝑔‖;K �𝐷 c
cIO

ℎ�
8
 

= ‖𝑓‖;J‖𝑔‖;K + ‖𝑓‖;J‖𝑔‖;K‖ℎ‖8 

= ‖𝑓‖;J,:J‖𝑔‖;K,:K + ‖𝑓‖;J,:J‖𝑔‖;K,:K‖ℎ‖8 

≤ {1 + ‖ℎ‖8}�‖𝑓‖;J,:J + ‖𝑊c(𝑓, ℎ)‖nJ,mJ��‖𝑔‖;K,:K + ‖𝑊c(𝑓, ℎ)‖nK,mK� 

= 𝐶‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK , where 𝐶 = {1 + ‖ℎ‖8}.                                     ∎ 

Now let's give a theorem as an example of bilinear multipliers. In this work, 
the weight functions �𝜔O(𝛼𝑧) + 𝜗O�(𝛼𝑧, 0)�𝜗O�(𝛼𝑧𝜏O, 0)�� and �𝜔8(𝛽𝑧) +

𝜗8�(𝛽𝑧, 0)�𝜗8�(𝛽𝑧𝜏8, 0)�� will be denoted by the symbols 𝑢�(𝑧) and 
𝑣�(𝑧)	for	𝛼, 𝛽 ∈ ℝ, respectively. Since the weight functions 𝜔O, 𝜗O, 𝜔8, 𝜗8 are 
polynomial type, 𝑢� and 𝑣� are symmetric functions for	𝛼, 𝛽 ∈ ℝ. That means 
𝑢�(−𝑧) = 𝑢�(𝑧), 𝑣�(−𝑧) = 𝑣�(𝑧)	for	𝑧 ∈ ℝ. 

Theorem 2.2 Let O
;J
+ O

;K
= O

8
. Assume that 𝑘O and 𝑘8 are constant numbers. 

If 𝜔v ≈ 𝑘O, 𝜗v ≈ 𝑘8 and 𝐾 ∈ 𝐿:O (ℝ) such that  𝜔(𝑧) = 𝑢O(𝑧)𝑣O(𝑧), then 
𝑚(𝜉, 𝜂) = 𝐾¡(𝜉 − 𝜂) is a bilinear multiplier on ℝ of type 
𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v�. Moreover there exists 
𝐶 > 0 such that  

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� ≤ 𝐶‖𝐾‖O,:. 

Proof. Let any 𝑓, 𝑔 ∈ 𝑆(ℝ) be given. It is known that 𝑓(𝑥 − 𝑧) ∈
𝐶𝑊:J,mJ

;J,nJ,cJ(ℝ) and 𝑔(𝑥 + 𝑧) ∈ 𝐶𝑊:K,mK
;K,nK,cK(ℝ) (Kulak & Ömerbeyoğlu, 

2021:188-200). If we use Lemma 2.1 and the (2.6) equality in (Kulak & 
Gürkanlı, 2013), then we have 

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� = ¢^ 𝑓(𝑥 − 𝑧)𝑔(𝑥 + 𝑧)𝐾(𝑧)𝑑𝑧	

ℝ

¢

pqr�,s�
K,K,i�
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≤ ^ 	
ℝ

‖𝑓(𝑥 − 𝑧)𝑔(𝑥 + 𝑧)‖pqr�,s�
K,K,i� |𝐾(𝑧)|𝑑𝑧 

≤ ∫ 	ℝ 𝐶‖𝑇£𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑇I£𝑔‖pqrK,sK

tK,uK,iK |𝐾(𝑧)|𝑑𝑧.                                        (5.2) 

Furthermore from Theorem 2.8 in (Kulak & Ömerbeyoğlu, 2021:188-200), 
we can write 

‖𝑇£𝑓‖pqrJ,sJ
tJ,uJ,iJ ≤ �𝜔O(𝑧) + 𝜗O�(𝑧, 0)�𝜗O�(𝑧𝜏O, 0)��‖𝑓‖pqrJ,sJ

tJ,uJ,iJ  

= 𝑢O(𝑧)‖𝑓‖pqrJ,sJ
tJ,uJ,iJ                                                                                       (5.3) 

and  

‖𝑇I£𝑔‖pqrK,sK
tK,uK,iK ≤ �𝜔8(−𝑧) + 𝜗8�(−𝑧, 0)�𝜗8�(−𝑧𝜏8, 0)��‖𝑔‖pqrK,sK

tK,uK,iK  

= 𝑣O(𝑧)‖𝑔‖pqrK,sK
tK,uK,iK                                                                                        (5.4) 

Combining the inequalities (5.2), (5.3) and (5.4), we get 

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� ≤ 𝐶‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK ^ 	

ℝ

|𝐾(𝑧)|𝜔(𝑧)𝑑𝑧 

= 𝐶‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK‖𝐾‖O,:.                                                            (5.5) 

So we say that  𝑚(𝜉, 𝜂) = 𝐾¡(𝜉 − 𝜂) is a bilinear multiplier. Also we obtain  

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� 

= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i�

‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK
 

≤ 𝐶‖𝐾‖O,:.                                                                                                           ∎ 
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Definition 2.3 Let 1 ≤ 𝑝O, 𝑟O, 𝑝8, 𝑟8𝑝v, 𝑟v < ∞, 𝜏O, 𝜏8,𝜏v ∈ (0,1) and 
𝜔O, 𝜗O, 𝜔8, 𝜗8 𝜔v, 𝜗v  be weight functions. Suppose that 𝜔O, 𝜗O, 𝜔8, 𝜗8 are weight 
functions of polynomial type. We denote by 

𝑀«�𝐶𝑊�𝑝O, 𝑟O,𝜔O, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔8, 𝜗8	, 𝜏8,; 𝑝v, 𝑟v, 𝜔v, 𝜗v, 𝜏v�� 

(shortly 𝑀«�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��) the space of measurable functions 𝑀:ℝ →

ℂ such that 𝑚(𝜉, 𝜂) = 𝑀(𝜉 − 𝜂) ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��, that is to say  

𝐵®(𝑓, 𝑔)(𝑥) = ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑀(𝜉 − 𝜂)𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

extends to bounded bilinear map from 𝐶𝑊:J,mJ
;J,nJ,cJ(ℝ) × 𝐶𝑊:K,mK

;K,nK,cK(ℝ) to 

𝐶𝑊:�,m�
;�,n�,c�(ℝ). Also we denote 

‖𝑀‖pq�;�,n�,:�,m�,c�� = ‖𝐵®‖ 

Theorem 2.4 Let O
;J
+ O

;K
= O

8
, 𝜔F(𝑧) = (1 + |𝑧|)7�, 𝜗F(𝑧, 𝑥) = (1 + |𝑧| +

|𝑥|)¯�, 𝑎F, 𝑏F ≥ 0 (i=1,2). Assume that 𝑘O and 𝑘8 are constant numbers. If 𝜔v ≈ 𝑘O, 
𝜗v ≈ 𝑘8, 𝜇 ∈ 𝑀(𝜔), 𝜔(𝑧) = 𝑢O(𝑧)𝑣O(𝑧), and 𝑚(𝜉, 𝜂) = �̂�(𝛼𝜉 + 𝛽𝜂) for  𝛼, 𝛽 ∈
ℝ, then 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v��. 
Furthermore there exists 𝐶 > 0 such that 

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� ≤ 𝐶‖𝜇‖: 

Proof. Take any 𝑓, 𝑔 ∈ 𝑆(ℝ). From Theorem 2.3 in (Kulak & Gürkanlı, 
2013), we know that 

𝐵z(𝑓, 𝑔)(𝑥) = ∫ 𝑓(𝑥 − 𝛼𝑧)𝑔(𝑥 − 𝛽𝑧)𝑑𝜇(𝑧)	ℝ .                                            (5.6) 

By from (Kulak & Ömerbeyoğlu, 2021:188-200), we can write 

‖𝑇�£𝑓‖pqrJ,sJ
tJ,uJ,iJ ≤ �𝜔O(𝛼𝑧) + 𝜗O�(𝛼𝑧, 0)�𝜗O�(𝛼𝑧𝜏O, 0)��‖𝑓‖pqrJ,sJ

tJ,uJ,iJ        

(5.7) 

and  
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±𝑇�£𝑔±pqrK,sK
tK,uK,iK ≤ �𝜔8(𝛽𝑧) + 𝜗8�(𝛽𝑧, 0)�𝜗8�(𝛽𝑧𝜏8, 0)��‖𝑔‖pqrK,sK

tK,uK,iK       

(5.8) 

Then by using (5.6), (5.7), (5.8) and Lemma 2.1, we have 

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� ≤ ^ 	

ℝ

‖𝑓(𝑥 − 𝛼𝑧)𝑔(𝑥 − 𝛽𝑧)‖pqr�,s�
K,K,i�𝑑|𝜇|(𝑧) 

≤ ^ 	
ℝ

𝐶‖𝑇�£𝑓‖pqrJ,sJ
tJ,uJ,iJ±𝑇�£𝑔±pqrK,sK

tK,uK,iK𝑑|𝜇|(𝑧) 

≤ ^ 	
ℝ

𝐶𝑢�(𝑧)𝑣�(𝑧)	‖𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑔‖pqrK,sK

tK,uK,iK𝑑|𝜇|(𝑧)	

= 𝐶‖𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑔‖pqrK,sK

tK,uK,iK ∫ 	ℝ 𝑢�(𝑧)𝑣�(𝑧)	𝑑|𝜇|(𝑧).                              (5.9) 

Firstly, assume that |𝛼| ≤ 1, |𝛽| ≤ 1. Then  

𝑢�(𝑧) = 𝜔O(𝛼𝑧) + 𝜗O�(𝛼𝑧, 0)�𝜗O�(𝛼𝑧𝜏O, 0)� 

= (1 + |𝛼𝑧|)7J + (1 + |𝛼𝑧|)¯J(1 + |𝛼𝑧𝜏O|)¯J 

≤ (1 + |𝑧|)7J + (1 + |𝑧|)¯J(1 + |𝜏O𝑧|)¯J = 𝑢O(𝑧) 

Similarly we have 𝑣�(𝑧) ≤ 𝑣O(𝑧)	. Hence by (5.9), we find  

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� ≤ 𝐶‖𝑓‖pqrJ,sJ

tJ,uJ,iJ 	‖𝑔‖pqrK,sK
tK,uK,iK ^ 	

ℝ

𝑢O(𝑧)𝑣O(𝑧)	𝑑|𝜇|(𝑧) 

= 𝐶‖𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑔‖pqrK,sK

tK,uK,iK‖𝜇‖:.                                                           (5.10) 

So we get 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v�� 
and from (5.10) 

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� 
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= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i�

‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK
≤ 𝐶	‖𝜇‖: 

Now, assume that |𝛼| > 1, |𝛽| > 1. Then  

𝑢�(𝑧) = 𝜔O(𝛼𝑧) + 𝜗O�(𝛼𝑧, 0)�𝜗O�(𝛼𝑧𝜏O, 0)� 

< (|𝛼| + |𝛼𝑧|)7J + (|𝛼| + |𝛼𝑧|)¯J(|𝛼| + |𝛼𝜏O𝑧|)¯J   

= |𝛼|7J(1 + |𝑧|)7J + |𝛼|8¯J(1 + |𝑧|)¯J(1 + |𝜏O𝑧|)¯J                        

< |𝛼|7J|𝛼|8¯J(1 + |𝑧|)7J + |𝛼|7J|𝛼|8¯J(1 + |𝑧|)¯J(1 + |𝜏O𝑧|)¯J       

								= |𝛼|7J|𝛼|8¯J�𝜔O(𝑧) + 𝜗O�(𝑧, 0)�𝜗O�(𝑧𝜏O, 0)�� 

= |𝛼|7J~8¯J𝑢O(𝑧). 

Also under same conditions, we have 𝑣�(𝑧) < |𝛽|7K~8¯K𝑣O(𝑧). So by (5.9) 

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i�  

< 𝐶|𝛼|7J~8¯J|𝛽|7K~8¯K‖𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑔‖pqrK,sK

tK,uK,iK‖𝜇‖:.                       (5.11) 

Thus we achieve 

𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v�� 

and from (5.11)  

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� 

							= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i�

‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK
 

< 𝐶|𝛼|7J~8¯J|𝛽|7K~8¯K	‖𝜇‖:. 

Suppose that |𝛼| > 1, |𝛽| ≤ 1. Since 𝑢�(𝑧) < |𝛼|7J~8¯J𝑢O(𝑧) and 𝑣�(𝑧) ≤
𝑣O(𝑧)	, it is obtained that 
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‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� < 𝐶|𝛼|7J~8¯J‖𝑓‖pqrJ,sJ

tJ,uJ,iJ 	‖𝑔‖pqrK,sK
tK,uK,iK‖𝜇‖:. (5.12) 

Hence we find  𝑚 ∈
𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v�� and by          (5.12)         

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� 

= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

‖²³	(§,\)‖¨©r�,s�
K,K,i�

‖§‖¨©rJ,sJ
tJ,uJ,iJ‖\‖¨©rK,sK

tK,uK,iK
<

								𝐶|𝛼|7J~8¯J	‖𝜇‖:. 

Finally suppose that |𝛼| ≤ 1, |𝛽| > 1. Again since 𝑢�(𝑧) ≤ 𝑢O(𝑧) and 
𝑣�(𝑧) < |𝛽|7K~8¯K𝑣O(𝑧), we observe 

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i� < 𝐶|𝛽|7K~8¯K‖𝑓‖pqrJ,sJ

tJ,uJ,iJ 	‖𝑔‖pqrK,sK
tK,uK,iK‖𝜇‖:.  (5.13) 

So we obtain 𝑚 ∈
𝐵𝑀�𝐶𝑊�𝑝O, 𝑟O,𝜔v, 𝜗O,𝜏O; 𝑝8, 𝑟8, 𝜔v, 𝜗8	, 𝜏8,; 2, 2, 𝜔v, 𝜗v, 𝜏v��  and by (5.13) 

‖𝑚‖pq�;J,nJ,:�,mJ,cJ;;K,nK,:�,mK	,cK,;8,8,:�,m�,c�� 

				= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

‖𝐵z	(𝑓, 𝑔)‖pqr�,s�
K,K,i�

‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK
 

< 𝐶|𝛽|7K~8¯K	‖𝜇‖:.                                                                                             ∎ 

Theorem 2.5 Let 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. Then  

𝑀(7,¯)𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� 

for each (𝑎, 𝑏) ∈ ℝ8. Furthermore 

±𝑀(7,¯)𝑚±pq�;�,n�,:�,m�,c��
≤ 𝑢O(𝑎)𝑣O(𝑏)‖𝑚‖pq�;�,n�,:�,m�,c�� 

Proof. Let 𝑓, 𝑔 ∈ 𝑆(ℝ) be given. It is known that  

𝐵®(´,µ)z(𝑓, 𝑔) = 𝐵z(𝑇I7𝑓, 𝑇I¯𝑔)                                                                (5.14) 
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by (Kulak & Gürkanlı, 2013). Moreover we have  

‖𝑇I7𝑓‖pqrJ,sJ
tJ,uJ,iJ ≤ �𝜔O(−𝑎) + 𝜗O�(−𝑎, 0)�𝜗O�(−𝑎𝜏8, 0)��‖𝑓‖pqrJ,sJ

tJ,uJ,iJ  

= 𝑢O(𝑎)‖𝑓‖pqrJ,sJ
tJ,uJ,iJ                                                                                      (5.15) 

and 

‖𝑇I¯𝑔‖pqrK,sK
tK,uK,iK ≤ �𝜔8(−𝑏) + 𝜗8�(−𝑏, 0)�𝜗8�(−𝑏𝜏8, 0)��‖𝑔‖pqrK,sK

tK,uK,iK  

= 𝑣O(𝑏)‖𝑔‖pqrK,sK
tK,uK,iK  .                                                                                    (5.16) 

If we use assumption 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and combine (5.14), 
(5.15) and (5.16), then we get 

¶𝐵®(´,µ)z(𝑓, 𝑔)¶pqr�,s�
t�,u�,i�

= ‖𝐵z(𝑇I7𝑓, 𝑇I¯𝑔)‖pqr�,s�
t�,u�,i�  

≤ ‖𝐵z‖‖𝑇I7𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑇I¯𝑔‖pqrK,sK

tK,uK,iK . 

≤ 𝑢O(𝑎)𝑣O(𝑏)‖𝐵z‖‖𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝑔‖pqrK,sK

tK,uK,iK                                           (5.17) 

and so	𝑀(7,¯)𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. Hence by (5.17), we conclude 

±𝑀(7,¯)𝑚±pq�;�,n�,:�,m�,c��
 

= sup
‖§‖¨©rJ,sJ

tJ,uJ,iJªO,‖\‖¨©rK,sK
tK,uK,iKªO	

¶𝐵®(´,µ)z(𝑓, 𝑔)¶pqr�,s�
t�,u�,i�(ℝ)

‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK
 

≤ 𝑢O(𝑎)𝑣O(𝑏)‖𝑚‖pq�;�,n�,:�,m�,c��.                                                                       ∎ 

Lemma 2.6 Suppose that 𝜔, 𝜗 are polynomial type weight functions. Let 
𝑓 ∈ 𝐶𝑊:,m

;,n,c(ℝ). Then 𝐷B𝑓 ∈ 𝐶𝑊:,m
;,n,c(ℝ) for each 0 ≠ 𝑠 ∈ ℝ. Moreover  

‖𝐷B𝑓‖pqr,s
t,u,i ≤ 𝐶|𝑠|I

µ
u‖𝑓‖pqr,s

t,u,i, if |𝑠| ≤ 1 
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‖𝐷B𝑓‖pqr,s
t,u,i < 𝐶|𝑠|

J
K~

´
t~

µ
u‖𝑓‖pqr,s

t,u,i, if |𝑠| > 1, for some 𝐶 > 0. 

Proof. Take any 𝑓 ∈ 𝐶𝑊:,m
;,n,c(ℝ). If we set ·

B
= 𝑢, then  

‖𝐷B𝑓‖;,: = |𝑠|I
O
8 ¸^ ¹𝑓 º

𝑡
𝑠¼
¹
;

ℝ

𝜔(𝑡)𝑑𝑡½

O
;

 

= |𝑠|I
J
K ¾∫ |𝑓(𝑢)|;ℝ 𝜔(𝑠𝑢)𝑠𝑑𝑢¿

J
t         

= |𝑠|
J
K ¾∫ |𝑓(𝑢)|;ℝ (1 + |𝑠𝑢|)7𝑑𝑢¿

J
t                                                              (5.18) 

Let 𝑔 ∈ 𝑆(ℝ) be given. Then 𝐷BSJ𝑔, 	𝐷 i
iSJ
𝑔 ∈ 𝑆(ℝ) and so           

𝐷 i
iSJ
(𝐷BSJ𝑔) ∈ 𝑆(ℝ). Also since different windows yield equivalent norms for 

a Gabor transform by Proposition 11.3.2 in (Gröchenig, 2001), there exists 𝐶O >
0 such that  

‖𝑊c(𝐷B𝑓, 𝑔)‖n,m = ¶𝑊c(𝑓, 𝐷BSJ𝑔) L
𝑥
𝑠
, 𝑠𝑤M¶

n,m
 

= À O
gc(OIc)

𝑒
K����

i 𝑉h i
iSJ

�hÁSJ\�
c 𝑓 LG

B
, 𝑠𝑤MÀ

n,m
        

= O
gc(OIc)

À𝑉h i
iSJ

�hÁSJ\�
𝑓 L G

B(OIc)
, Ba
c
MÀ

n,m
                  

								≤ 𝐶O
1

g𝜏(1 − 𝜏)
�𝑉h i

iSJ
\𝑓 º

𝑥
𝑠(1 − 𝜏)

,
𝑠𝑤
𝜏 ¼

�
n,m

 

								= 𝐶O À
1

g𝜏(1 − 𝜏)
𝑒
8EFGa
c 𝑉h i

iSJ
\𝑓 º

𝑥
𝑠(1 − 𝜏)

,
𝑠𝑤
𝜏 ¼

À
n,m

 

								= 𝐶O À
1

g𝜏(1 − 𝜏)
𝑒
8EFGa
c 𝑉h i

iSJ
\

c 𝑓 L
𝑥
𝑠
, 𝑠𝑤MÀ

n,m
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= 𝐶O ¶𝑊c(𝑓, 𝑔) L
G
B
, 𝑠𝑤M¶

n,m
.  

If we take G
B
= 𝑢 and 𝑠𝑤 = 𝑣, then 

‖𝑊c(𝐷B𝑓, 𝑔)‖n,m ≤ 𝐶O ¶𝑊c(𝑓, 𝑔) L
𝑥
𝑠
, 𝑠𝑤M¶

n,m
 

= 𝐶O ¸^ Â𝑊c(𝑓, 𝑔) L
𝑥
𝑠
, 𝑠𝑤MÂ

n

ℝ

𝜗(𝑥, 𝑤)𝑑𝑥𝑑𝑤½

O
n

 

= 𝐶O Ã∫ |𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|nℝ L1 + |𝑠𝑢| + ÂÄ
B
ÂM
¯
𝑑𝑢𝑑𝑣Å

J
u
.                            (5.19) 

Assume that |𝑠| ≤ 1. Hence by (5.18)  

‖𝐷B𝑓‖;,: = |𝑠|
O
8 ¸^|𝑓(𝑢)|;

ℝ

(1 + |𝑠𝑢|)7𝑑𝑢½

O
;

 

≤ |𝑠|
J
K ¾∫ |𝑓(𝑢)|;ℝ (1 + |𝑢|)7𝑑𝑢¿

J
t = ‖𝑓‖;,: < ∞.                                     (5.20) 

Since 𝑓 ∈ 𝐶𝑊:,m
;,n,c(ℝ), we have 𝑊c(𝑓, 𝑔) ∈ 𝐿mn (ℝ8). So by (5.19) 

‖𝑊c(𝐷B𝑓, 𝑔)‖n,m ≤ 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

L1 + |𝑠𝑢| + Â
𝑣
𝑠
ÂM
¯
𝑑𝑢𝑑𝑣½

O
n

 

≤ 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

L1 + |𝑢| + Â
𝑣
𝑠
ÂM
¯
𝑑𝑢𝑑𝑣½

O
n

 

≤ 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

º
1
|𝑠|

+ Â
𝑢
𝑠
Â + Â

𝑣
𝑠
Â¼
¯
𝑑𝑢𝑑𝑣½

O
n
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= 𝐶O
1
|𝑠|

¯
n
¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

(1 + |𝑢| + |𝑣|)¯𝑑𝑢𝑑𝑣½

O
n

 

= 𝐶O
O
|B|

µ
u ‖𝑊c(𝑓, 𝑔)‖n,m < ∞.                                                                         (5.21) 

Combining (5.20) and (5.21), we achieve  

‖𝐷B𝑓‖pqr,s
t,u,i = ‖𝐷B𝑓‖;,: + ‖𝑊c(𝐷B𝑓, 𝑔)‖n,m 

≤ ‖𝑓‖;,: + 𝐶O
1
|𝑠|

¯
n
‖𝑊c(𝑓, 𝑔)‖n,m 

≤ 𝐶
1
|𝑠|

¯
n
�‖𝑓‖;,: + ‖𝑊c(𝑓, 𝑔)‖n,m� 

=𝐶|𝑠|I
µ
u‖𝑓‖pqr,s

t,u,i, where 𝐶 = 𝑚𝑎𝑥{1, 𝐶O	}.  

Now let |𝑠| > 1. Then by (5.19) 

‖𝐷B𝑓‖;,: = |𝑠|
O
8 ¸^|𝑓(𝑢)|;

ℝ

(1 + |𝑠𝑢|)7𝑑𝑢½

O
;

 

								< |𝑠|
O
8 ¸^|𝑓(𝑢)|;

ℝ

(|𝑠| + |𝑠𝑢|)7𝑑𝑢½

O
;

 

= |𝑠|
J
K~

´
t ¾∫ |𝑓(𝑢)|;ℝ (1 + |𝑢|)7𝑑𝑢¿

J
t = |𝑠|

J
K~

´
t‖𝑓‖;,: < ∞.               (5.22) 

Again since 𝑓 ∈ 𝐶𝑊:,m
;,n,c(ℝ), we have 𝑊c(𝑓, 𝑔) ∈ 𝐿mn (ℝ8). From         (5.19) 

‖𝑊c(𝐷B𝑓, 𝑔)‖n,m ≤ 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

L1 + |𝑠𝑢| + Â
𝑣
𝑠
ÂM
¯
𝑑𝑢𝑑𝑣½

O
n
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< 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

L|𝑠| + |𝑠𝑢| + Â
𝑣
𝑠
ÂM
¯
𝑑𝑢𝑑𝑣½

O
n

 

< 𝐶O ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

(|𝑠| + |𝑠𝑢| + |𝑠𝑣|)¯𝑑𝑢𝑑𝑣½

O
n

 

= 𝐶O|𝑠|
¯
n ¸^|𝑊c(𝑓, 𝑔)(𝑢, 𝑣)|n

ℝ

(1 + |𝑢| + |𝑣|)¯𝑑𝑢𝑑𝑣½

O
n

 

= 𝐶O|𝑠|
µ
u‖𝑊c(𝑓, 𝑔)‖n,m.                                                                                  (5.23) 

By using (5.22) and (5.23), we obtain 

‖𝐷B𝑓‖pqr,s
t,u,i = ‖𝐷B𝑓‖;,: + ‖𝑊c(𝐷B𝑓, 𝑔)‖n,m 

< |𝑠|
O
8~

7
;‖𝑓‖;,: + 𝐶O|𝑠|

¯
n‖𝑊c(𝑓, 𝑔)‖n,m 

< |𝑠|
O
8~

7
;~

¯
n‖𝑓‖;,: + 𝐶O|𝑠|

O
8~

7
;~

¯
n‖𝑊c(𝑓, 𝑔)‖n,m 

=𝐶|𝑠|
J
K~

´
t~

µ
u�‖𝑓‖;,: + ‖𝑊c(𝑓, 𝑔)‖n,m� 

= 𝐶|𝑠|
J
K~

´
t~

µ
u‖𝑓‖pqr,s

t,u,i, where 𝐶 = 𝑚𝑎𝑥{1, 𝐶O	}.                                                ∎ 

Theorem 2.7 Assume that 𝜔v and 𝜗v are polynomial type weight functions. 
Let 0 < 𝑠 < ∞ and 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. Then  

𝐷B𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� 

Furthermore  

‖𝐷B𝑚‖pq�;�,n�,:�,m�,c�� ≤ 𝐶𝑠ILO~
µJ
uJ
~µKuK

~´�t�
~µ�u�

M‖𝑚‖pq�;�,n�,:�,m�,c��, if 	𝑠 ≤ 1, 

‖𝐷B𝑚‖pq�;�,n�,:�,m�,c�� < 𝐶𝑠L
J
K~

´J
tJ
~µJuJ

~´KtK
~µKuK

~µ�u�
M‖𝑚‖pq�;�,n�,:�,m�,c��, if	𝑠 > 1 
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for some 𝐶 > 0. 

Proof. Take any 𝑓, 𝑔 ∈ 𝑆(ℝ). For 𝑥 ∈ ℝ, we take  }
B
= 𝑢, �

B
= 𝑣 

𝐵hÁz(𝑓, 𝑔)(𝑥) = ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝐷B𝑚(𝜉, 𝜂)𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑠IO𝑚º
𝜉
𝑠
,
𝜂
𝑠¼
𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= ^ ^ 𝑓P(𝑠𝑢)𝑔{
ℝℝ

(𝑠𝑣)𝑠IO𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑠8𝑑𝑢𝑑𝑣 

= ^ ^ 𝑠
O
8

ℝℝ

𝑓P(𝑠𝑢)𝑠
O
8𝑔{(𝑠𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 

= ^ ^ 𝐷BSJ
ℝℝ

𝑓P(𝑢)𝐷BSJ𝑔{(𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 

= ^ ^ 𝐷B𝑓Q (𝑢)
ℝℝ

𝐷B𝑔Q (𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 

= 𝐵z(𝐷B𝑓, 𝐷B𝑔)(𝑠𝑥) = 𝑠I
J
K𝐷BSJ𝐵z(𝐷B𝑓, 𝐷B𝑔)(𝑥)                                      (5.24) 

Let 𝑠 ≤ 1. By Lemma 2.6, assumption 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and 
equation (5.24), we find 

±𝐵hÁz(𝑓, 𝑔)±pqr�,s�
t�,u�,i� = �𝑠I

O
8𝐷BSJ𝐵z(𝐷B𝑓, 𝐷B𝑔)�

pqr�,s�
t�,u�,i�

 

≤ 𝐶𝑠ILO~
´�
t�
~µ�u�

M‖𝐵z‖‖𝐷B𝑓‖pqrJ,sJ
tJ,uJ,iJ 	‖𝐷B𝑔‖pqrK,sK

tK,uK,iK      

								≤ 𝐶𝑠ILO~
7�
;�
~¯�n�

M‖𝐵z‖𝑠
I¯JnJ‖𝑓‖pqrJ,sJ

tJ,uJ,iJ𝑠
I¯KnK‖𝑔‖pqrK,sK

tK,uK,iK  
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													= 𝐶𝑠ILO~
¯J
nJ
~¯KnK

~7�;�
~¯�n�

M‖𝐵z‖‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK  

for some 𝐶 > 0. Thus we achieve 

‖𝐷B𝑚‖pq�;�,n�,:�,m�,c�� ≤ 𝐶𝑠ILO~
µJ
uJ
~µKuK

~´�t�
~µ�u�

M‖𝑚‖pq�;�,n�,:�,m�,c��. 

Let 𝑠 > 1. Again by Lemma 2.6, assumption 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� 

and equation (5.24), we have 

±𝐵hÁz(𝑓, 𝑔)±pqr�,s�
t�,u�,i� = �𝑠I

O
8𝐷BSJ𝐵z(𝐷B𝑓, 𝐷B𝑔)�

pqr�,s�
t�,u�,i�

 

< 𝐶𝑠I
J
K𝑠

µ�
u�‖𝐵z‖‖𝐷B𝑓‖pqrJ,sJ

tJ,uJ,iJ 	‖𝐷B𝑔‖pqrK,sK
tK,uK,iK      

< 𝐶𝑠I
J
K𝑠

µ�
u�‖𝐵z‖𝑠

LJK~
´J
tJ
~µJuJ

M‖𝑓‖pqrJ,sJ
tJ,uJ,iJ𝑠

LJK~
´K
tK
~µKuK

M‖𝑔‖pqrK,sK
tK,uK,iK   

									= 𝐶𝑠L
O
8~

7J
;J
~¯JnJ

~7K;K
~¯KnK

~¯�n�
M‖𝐵z‖‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK  

for some 𝐶 > 0. Therefore we obtain 

‖𝐷B𝑚‖pq�;�,n�,:�,m�,c�� < 𝐶𝑠L
J
K~

´J
tJ
~µJuJ

~´KtK
~µKuK

~µ�u�
M‖𝑚‖pq�;�,n�,:�,m�,c��.          ∎ 

Theorem 2.8 Let 𝑚(𝑠𝜉, 𝑠𝜂) = 𝑚(𝜉, 𝜂), 0 < 𝑠 < ∞ and let 𝜔v, 𝜗v be 
polynomial type weight functions. Then 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� if and 

only if 𝐷B𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��.  

Proof. Let 𝑓, 𝑔 ∈ 𝑆(ℝ) be given. Suppose that 𝑠 ≠ 1. Using the (5.24) and 
assumption 𝑚(𝑠𝜉, 𝑠𝜂) = 𝑚(𝜉, 𝜂), we take 𝑠𝑢 = 𝜉, 𝑠𝑣 = 𝜂  

𝐵hÁz(𝑓, 𝑔)(𝑥) = 𝑠I
O
8𝐷BSJ𝐵z(𝐷B𝑓, 𝐷B𝑔)(𝑥) 

					= ^ ^ 𝐷B𝑓Q (𝑢)
ℝℝ

𝐷B𝑔Q (𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 
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= ^ ^ 𝐷BSJ
ℝℝ

𝑓P(𝑢)𝐷BSJ𝑔{(𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 

= ^ ^ 𝑠
ℝℝ

𝑓P(𝑠𝑢)𝑔{(𝑠𝑣)𝑚(𝑢, 𝑣)𝑒8EF〈Æ~Ä,BG〉𝑑𝑢𝑑𝑣 

= 𝑠IO ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑚 º
𝜉
𝑠
,
𝜂
𝑠¼
𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= 𝑠IO ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑚(𝜉, 𝜂)𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= 𝑠IO𝐵z(𝑓, 𝑔)(𝑥)                               

Let 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. So we find 

±𝐵hÁz(𝑓, 𝑔)±pqr�,s�
t�,u�,i� = ‖𝑠IO𝐵z(𝑓, 𝑔)‖pqr�,s�

t�,u�,i�  

≤ 𝑠IO‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK . 

Hence we achieve 𝐷B𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. Suppose that 

𝐷B𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� 

Then we have 

 ‖𝐵z(𝑓, 𝑔)‖pqr�,s�
t�,u�,i� = ±𝑠𝐵hÁz(𝑓, 𝑔)±

pqr�,s�
t�,u�,i�

 

≤ 𝑠‖𝐷B𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK . 

Thus we obtain 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��.                                                   ∎ 

Theorem 2.9 Let 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. If Φ ∈ 𝐿:O (ℝ8) such that 

𝜔(𝑎, 𝑏) = 𝑢O(𝑎)𝑣O(𝑏), then Φ¡𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and  
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±Φ¡𝑚±pq�;�,n�,:�,m�,c��
< ‖Φ‖O,:‖𝑚‖pq�;�,n�,:�,m�,c�� 

Proof. Assume that Φ ∈ 𝐿:O (ℝ8). Take any 𝑓, 𝑔 ∈ 𝑆(ℝ). It is written by 
(Kulak &Gürkanlı, 2013)  

𝐵È¡z(𝑓, 𝑔)(𝑥) = ^ ^ Φ(𝑎, 𝑏)𝐵®(S´,Sµ)z(𝑓, 𝑔)
ℝℝ

(𝑥)𝑑𝑎𝑑𝑏 

By assumption 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and Theorem 2.5, we get  

𝑀(I7,I¯)𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and  

±𝑀(7,¯)𝑚±pq�;�,n�,:�,m�,c��
≤ 𝑢O(𝑎)𝑣O(𝑏)‖𝑚‖pq�;�,n�,:�,m�,c�� 

So, 

‖𝐵È¡z(𝑓, 𝑔)‖pqr�,s�
t�,u�,i�  

≤ ^ ^ ¶Φ(𝑎, 𝑏)𝐵®(S´,Sµ)z(𝑓, 𝑔)¶pq�;�,n�,:�,m�,c��
ℝℝ

𝑑𝑎𝑑𝑏 

= ^ ^|Φ(𝑎, 𝑏)| ¶𝐵®(S´,Sµ)z(𝑓, 𝑔)¶pq�;�,n�,:�,m�,c��
ℝℝ

𝑑𝑎𝑑𝑏 

≤ ^ ^|Φ(𝑎, 𝑏)|±𝑀(7,¯)𝑚±pq�;�,n�,:�,m�,c��
‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK

ℝℝ

𝑑𝑎𝑑𝑏 

≤ ^ ^|Φ(𝑎, 𝑏)|𝑢O(𝑎)𝑣O(𝑏)‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK

ℝℝ

𝑑𝑎𝑑𝑏 

= ‖Φ‖O,:‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK .                            (5.25) 

Therefore by (5.25), we observe that Φ¡𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and  

±Φ¡𝑚±pq�;�,n�,:�,m�,c��
< ‖Φ‖O,:‖𝑚‖pq�;�,n�,:�,m�,c��.                                          ∎ 
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Theorem 2.10 Let 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and let 𝜔v, 𝜗v be 
polynomial type weight functions.  

a) If Φ ∈ 𝐿O ºℝ~, 𝑠ILO~
´J
tJ
~µJuJ

~´KtK
~µKuK

~µ�u�
M¼ such that 𝑠 ≤ 1, then 

𝑚È(𝜉, 𝜂) = ^ 𝑚(𝑠𝜉, 𝑠𝜂)Φ(𝑠)ds ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��
Ê

Ë

 

Furthermore, ‖𝑚È‖pq�;�,n�,:�,m�,c�� 

≤ 𝐶‖Φ‖
ÌJÍℝÎ,B

SºJÎ´JtJ
ÎµJuJ

Î´KtK
ÎµKuK

Îµ�u�
¼
Ï
‖𝑚‖pq�;�,n�,:�,m�,c�� for some 𝐶 > 0. 

b) If Φ ∈ 𝐿O ºℝ~, 𝑠L
J
K~

µJ
uJ
~µKuK

~´�t�
~µ�u�

M¼ such that 𝑠 > 1, then 

𝑚È(𝜉, 𝜂) = ^ 𝑚(𝑠𝜉, 𝑠𝜂)Φ(𝑠)ds ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��
Ê

Ë

 

Moreover ‖𝑚È‖pq�;�,n�,:�,m�,c�� 

≤ 𝐶‖Φ‖
ÌJÍℝÎ,B

ºJKÎ
µJ
uJ
ÎµKuK

Î´�t�
Îµ�u�

¼
Ï
‖𝑚‖pq�;�,n�,:�,m�,c�� for some 𝐶 > 0. 

Proof. Let us take 𝑓, 𝑔 ∈ 𝑆(ℝ). Then by Fubini Theorem, 

𝐵zÐ(𝑓, 𝑔)(𝑥) = ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂)𝑚È(𝜉, 𝜂)𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂) Ñ^ 𝑚(𝑠𝜉, 𝑠𝜂)Φ(𝑠)ds
Ê

Ë

Ò 𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= ^ ^ 𝑓P(𝜉)𝑔{
ℝℝ

(𝜂) Ñ^ 𝐷BSJ𝑚(𝜉, 𝜂)Φ(𝑠)𝑠
IO8ds

Ê

Ë

Ò 𝑒8EF〈}~�,G〉𝑑𝜉𝑑𝜂 

= ∫ 𝐵hÁSJz(𝑓, 𝑔)(𝑥)Φ(𝑠)𝑠
IJKdsÊ

Ë .                                                                (5.26) 
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a) Let 𝑠 ≤ 1. If we use 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and the equality 

(5.26), then we have 𝐷BSJ𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and  

±𝐵zÐ(𝑓, 𝑔)±pqr�,s�
t�,u�,i� ≤ ^ ¶𝐵hÁSJz(𝑓, 𝑔)¶ |Φ(𝑠)|𝑠

IO8ds
Ê

Ë

 

≤ ^‖𝐷BSJ𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK|Φ(𝑠)|𝑠I
O
8ds

Ê

Ë

 

≤ ^ 𝐶𝑠ILO~
7J
;J
~¯JnJ

~7K;K
~¯KnK

~¯�n�
M‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ

tJ,uJ,iJ‖𝑔‖pqrK,sK
tK,uK,iK|Φ(𝑠)|ds

Ê

Ë

 

= 𝐶‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK ^ 𝑠ILO~
7J
;J
~¯JnJ

~7K;K
~¯KnK

~¯�n�
M|Φ(𝑠)|ds

Ê

Ë

 

= 𝐶‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK‖Φ‖
ÌJÍℝÎ,B

SºJÎ´JtJ
ÎµJuJ

Î´KtK
ÎµKuK

Îµ�u�
¼
Ï
 

and so 𝑚È ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F��. Then 

‖𝑚È‖pq�;�,n�,:�,m�,c�� ≤ 𝐶‖Φ‖
ÌJÍℝÎ,B

SºJÎ´JtJ
ÎµJuJ

Î´KtK
ÎµKuK

Îµ�u�
¼
Ï
‖𝑚‖pq�;�,n�,:�,m�,c�� 

b) Assume that 𝑠 > 1. Then by 𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and the 

equality (5.26), we find 𝐷BSJ𝑚 ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and 

±𝐵zÐ(𝑓, 𝑔)±pqr�,s�
t�,u�,i� ≤ ^ ¶𝐵hÁSJz(𝑓, 𝑔)¶ |Φ(𝑠)|𝑠

IO8ds
Ê

Ë

 

< ^‖𝐷BSJ𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK|Φ(𝑠)|𝑠I
O
8ds

Ê

Ë

 

< ^ 𝐶𝑠L
O
8~

¯J
nJ
~¯KnK

~7�;�
~¯�n�

M‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK|Φ(𝑠)|ds
Ê

Ë
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= 𝐶‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK ^ 𝑠L
O
8~

¯J
nJ
~¯KnK

~7�;�
~¯�n�

M|Φ(𝑠)|ds
Ê

Ë

 

= 𝐶‖𝑚‖pq�;�,n�,:�,m�,c��‖𝑓‖pqrJ,sJ
tJ,uJ,iJ‖𝑔‖pqrK,sK

tK,uK,iK‖Φ‖
ÌJÍℝÎ,B

ºJKÎ
µJ
uJ
ÎµKuK

Î´�t�
Îµ�u�

¼
Ï
. 

Thus we obtain 𝑚È ∈ 𝐵𝑀�𝐶𝑊�𝑝F, 𝑟F,𝜔F, 𝜗F,𝜏F�� and  

‖𝑚È‖pq�;�,n�,:�,m�,c�� ≤ 𝐶‖Φ‖
ÌJÍℝÎ,B

ºJKÎ
µJ
uJ
ÎµKuK

Î´�t�
Îµ�u�

¼
Ï
‖𝑚‖pq�;�,n�,:�,m�,c�� . ∎ 

 

3. CONCLUSION 

Theory of bilinear multipliers has been studied in a number of papers 
(Coifman & Meyer, 1978; Gilbert & Nahmod, 2000; Gilbert & Nahmod, 2001; 
Grafakos & Kalton, 2001). In our previous works, we investigated bilinear 
multipliers and gave examples for weighted Lebesgue spaces, small Lebesgue 
spaces, weighted Wiener amalgam spaces, weighted Lorentz spaces, variable 
exponenet Lebesgue spaces, variable exponent Wiener amalgam spaces, variable 
exponent Lorentz spaces, etc (Kulak & Gürkanlı, 2013; Kulak & Gürkanlı, 2014; 
Kulak & Gürkanlı, 2017; Kulak & Gürkanlı, 2021). This chapter deals with the 
theory of bilinear multipliers on  𝐶𝑊:,m

;,n,c(ℝ) which was studied by (Kulak & 
Ömerbeyoğlu, 2021). In this work, the bilinear multipliers space is defined, and 
then exemplary theorems are proved for this function space characterized by the 
Wigner transform. 
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1. INTRODUCTION 

Recently the field of nullity distributions has become very interesting topic 
in differential geometry. Gray (Gray, 1966) and Tanno (Tanno, 1978) introduced 
the notion of 𝜅-nullity distribution (𝜅 ∈ ℜ) in the study of Riemannian 
manifolds (𝑀, 𝑔), which is defined for any 𝑝 ∈ 𝑀 and 𝑘 ∈ ℜ as follows  

𝑁(𝜅): 𝑝 → 𝑁.(𝜅) = {𝑊 ∈ 𝑇.𝑀:𝑅(𝑈, 𝑉)𝑊 = 𝜅[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉]} 

for any 𝑈, 𝑉 ∈ 𝑇.𝑀, where 𝑇.𝑀 indicate the tangent vector space of 𝑀 at 
any point 𝑝 ∈ 𝑀 and 𝑅 means the Riemannian curvature tensor of type (1,3). 
Next Blair, Koufogiorgos and Papantoniou (Blair, et al., 1995) introduced the 
(𝜅, 𝜇)-nullity distribution which is a generalized notion of the 𝜅-nullity 
distribution on a contact metric manifold (𝑀=>?@, 𝜙, 𝜉, 𝜂, 𝑔) and defined for any 
𝑝 ∈ 𝑀=>?@ and 𝜅, 𝜇 ∈ ℜ as follows  

𝑁(𝜅, 𝜇): 𝑝 → 𝑁.(𝜅, 𝜇) 
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= {𝑊 ∈ 𝑇.𝑀=>?@: 𝑅(𝑈, 𝑉)𝑊 = 𝜅[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉] +
𝜇[𝑔(𝑉,𝑊)ℎ𝑈 − 𝑔(𝑈,𝑊)ℎ𝑉]}            (1,1) 

where ℎ = @
=
ℓG𝜙, and ℓ denotes the Lie differentiation. 

In (Dilego & Pastore, 2009), Dileo and Pastore introduced the notion of 
(𝜅, 𝜇)H-nullity distribution, another generalized notion of the 𝜅-nullity 
distribution, on an almost Kenmotsu manifold (𝑀=>?@, 𝜙, 𝜉, 𝜂, 𝑔), which is 
defined for any 

𝑝 ∈ 𝑀=>?@ and 𝜅, 𝜇 ∈ ℜ as given  

𝑁(𝜅, 𝜇)H: 𝑝 → 𝑁.(𝜅, 𝜇)H 

= {𝑊 ∈ 𝑇.𝑀=>?@: 𝑅(𝑈, 𝑉)𝑊 = 𝜅[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉] +
𝜇[𝑔(𝑉,𝑊)ℎ′𝑈 − 𝑔(𝑈,𝑊)ℎ′𝑉]}        (1,2) 

where ℎ′ = ℎ ∘ 𝜙. 

Kenmotsu (Kenmotsu, 1972) introduced new type of almost contact metric 
manifolds called Kenmotsu manifolds these days. To take into account 𝑀=>?@ 
be an almost contact metric manifold with almost contact structure (𝜙, 𝜉, 𝜂, 𝑔) 
given by a (1,1)-tensor field 𝜙, a characteristic vector field 𝜉, a 1-form 𝜂 and a 
compatible metric 𝑔 satisfying the conditions (Blair, 1976; Blair, 2010).  

𝜙= = −𝐼 + 𝜂 ⊗ 𝜉, 𝜙𝜉 = 0, 𝜂(𝜉) = 1, 𝜂 ∘ 𝜙 = 0,                                        (1.3) 

𝑔(𝜙𝑈,𝜙𝑉) = 𝑔(𝑈, 𝑉) − 𝜂(𝑈)𝜂(𝑉)                                                      (1.4) 

for any vector fields 𝑈 and 𝑉 of 𝑇.𝑀=>?@. The fundamental 2-form Ω is 
defined by Ω(𝑈, 𝑉) = 𝑔(𝑈, 𝜙𝑉). The restriction for an almost contact metric 
manifold being normal is analogous to vanishing of the (1,2)-type torsion tensor 
𝑁P, defined by 𝑁P = [𝜙, 𝜙] + 2𝑑𝜂 ⊗ 𝜉, where [𝜙, 𝜙] is the Nijenhuis torsion 
of 𝜙 (Blair, 1976). A normal almost Kenmotsu manifold is a Kenmotsu manifold 
such that 𝑑𝜂 = 0 and 𝑑Ω = 2𝜂 ∧ Ω. Also Kenmotsu manifolds can be 
characterized by (∇T𝜙)(𝑉) = 𝑔(𝜙𝑈, 𝑉)𝜉 − 𝜂(𝑉)𝜙𝑈, for any vector fields 𝑈, 𝑉. 
It is well known (Kenmotsu, 1972) that a Kenmotsu manifold 𝑀=>?@ is locally 
a warped product 𝐼U ×W 𝑁=>, where 𝑁=> is a K�̈�hler manifold, 𝐼U is an open 
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interval with coordinate 𝑡 and the warping function 𝑓U, defined by 𝑓U = 𝑐𝑒^ for 
some positive constant 𝑐. Let us denote the distribution orthogonal to 𝜉 by �̀� and 
defined by �̀� = 𝐾𝑒𝑟(�̂�) = 𝐼Ud(𝜙). In an almost Kenmotsu manifold, since �̂� is 
closed, �̀� is an integrable distribution. 

 

2. ALMOST KENMOTSU MANIFOLDS 

Let 𝑀=>?@ be an almost Kenmotsu manifold. We denote by ℎ = @
=
ℓG𝜙 and 

𝑙 = 𝑅(⋅, 𝜉)𝜉 on 𝑀=>?@. The tensor fields 𝑙 and ℎ are symmetric operators and 
satisfy the blowing in the same direction  

𝜉 = 0,			𝑙𝜉 = 0,			𝑡𝑟(ℎ) = 0,			𝑡𝑟(ℎ𝜙) = 0,			ℎ𝜙 + 𝜙ℎ = 0.                         (2.1) 

Furthermore, for the subsequent results (Dileo, 2007; Gray, 1966).  

∇T𝜉 = −𝜙=𝑈(⇒ ∇G𝜉 = 0)                                                                 (2.2) 

𝜙𝑙𝜙 − 𝑙 = 2(ℎ= − 𝜙=)                                                                       (2.3) 

𝑅(𝑈, 𝑉)𝜉 = 𝜂(𝑈)(𝑉 − 𝜙ℎ𝑉) − 𝜂(𝑉)(𝑈 − 𝜙ℎ𝑈) + (∇j𝜙ℎ)𝑉 − (∇T𝜙ℎ)𝑉 (2.4) 

for any vector fields 𝑈, 𝑉. The (1,1)-type symmetric tensor field ℎH = ℎ ∘ 𝜙 
is anticommuting with 𝜙 and 

ℎH𝜉 = 0 

Also it is explicit that  

		ℎ = 0 ⇔ ℎ′ = 0,			ℎ′= = (𝜅 + 1)𝜙=		(⇔ ℎ= = (𝜅 + 1)𝜙=)                   (2.5) 

which grip on (𝜅, 𝜇)H-almost Kenmotsu manifold. 

In 2014, Shaikh and Kundu (Shaikh & Kundu, 2014) to imported and 
studied a type of tensor field, called generalized 𝐵 curvature tensor on a 
Riemannian manifold. It count the structures of quasi-conformal, Weyl-
conformal, conharmonic and concircular curvature tensors and it spell out as  

𝐵(𝑈, 𝑉)𝑊 = 𝑝m𝑅(𝑈, 𝑉)𝑊 + 𝑝@[𝑆(𝑉,𝑊)𝑈 − 𝑆(𝑈,𝑊)𝑉 + 𝑔(𝑉,𝑊)𝑄𝑈
− 𝑔(𝑈,𝑊)𝑄𝑉] 
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+2𝑝=p[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉]                                                                  (2.6) 

where 𝑅, 𝑆, 𝑄q and 𝑟 are the curvature tensor, the Ricci tensor, the Ricci 
operator and the scalar curvature respectively. 

Thus, the 𝐵-curvature tensor is classified as 

i) The quasi-conformal curvature tensor 𝐶 (Yano & Sawaki, 1968) if  

		𝑝m = 𝑎, 𝑝@ = 𝑏 and 𝑝= = − @
=>
[ t
>u@

+ 2𝑏]                                                  (2.7) 

ii) The weyl-conformal curvature tensor 𝐶 (Yano, 1984) if  

		𝑝m = 1, 𝑝@ = − @
>u=

 and 𝑝= = − @
=(>u@)(>u=)

                                                 (2.8) 

iii) The concircular curvature tensor 𝐶∗(Yano, 1940) if  

		𝑝m = 1,	𝑝@ = 0 and 𝑝= = − @
>(>u@)

                                                                 (2.9) 

iv) The conharmonic curvature tensor 𝐻  (Ishi, 1957) if  

		𝑝m = 1, 𝑝@ = − @
(>u@)

 and 𝑝= = 0                                                                 (2.10) 

 

3. 𝝃 LINKED WITH (𝜿, 𝝁)-NULLITY DISTRIBUTION 

In this section we consider almost Kenmotsu manifolds with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution satisfying 𝐵=0,  𝜉-𝐵 flat and 𝜙-𝐵 flat, where 𝐵 is 
the generalized 𝐵-curvature tensor. Then from (1.3) we have  

𝑅(𝑈, 𝑉)𝜉 = 𝜅[𝜂(𝑉)𝑈 − 𝜂(𝑈)𝑉] + 𝜇[𝜂(𝑉)ℎ𝑈 − 𝜂(𝑈)ℎ𝑉]                   (3.1) 

where 𝜅, 𝜇 ∈ ℜ. Before cited our main theorem, we recall some results.  

Theorem 3.1 (Dileo & Pastore, 2009). Let 𝑀=>?@ be an almost Kenmotsu 
manifold of dimension (2n + 1). Such that the characteristic vector field ξ linked 
to the (𝜅, 𝜇)-nullity distribution. Then 𝜅 = −1, ℎ = 0 and 𝑀=>?@ is locally a 
warped product of an open interval and an almost Kähler manifold.  
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With the hand of (3.1) and Theorem 3.1 we have the following properties  

𝑅(𝑈, 𝑉)𝜉 = 𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈                                                              (3.2) 

	𝜂(𝑅(𝑈, 𝑉)𝑊) = 𝑔(𝑈,𝑊)𝜂(𝑉) − 𝑔(𝑉,𝑊)𝜂(𝑈)                                 (3.3) 

𝑅(𝜉, 𝑈)𝑉 = −𝑔(𝑈, 𝑉)𝜉 + 𝜂(𝑉)𝑈                                                            (3.4) 

𝑆(𝜉, 𝑈) = −2𝑛𝜂(𝑈)                                                                           (3.5) 

𝑄q𝜉 = −2𝑛𝜉                                                                                  (3.6) 

for any vector fields 𝑈, 𝑉 on 𝑀=>?@. Therefore, we prove the following 
result.  

Theorem 3.2 An almost Kenmotsu manifold 𝑀=>?@ with ξ belongs to the 
(𝜅, 𝜇)-nullity distribution is 𝐵-flat if and only if the manifold is locally isometric 
to the hyperbolic space 𝐻=>?@(−1).  

Proof. Let 𝑀=>?@ is 𝐵-flat, that is, 𝐵(𝑈, 𝑉)𝑊 = 0, for any vector fields 
𝑈, 𝑉,𝑊 on 𝑀=>?@. So from (2.6), we have  

𝑅q(𝑈, 𝑉,𝑊, 𝑃) = −
𝑝@
𝑝m
[𝑆(𝑉,𝑊)𝑔(𝑈, 𝑃) − 𝑆(𝑈,𝑊)𝑔(𝑉, 𝑃) + 𝑔(𝑉,𝑊)𝑆(𝑈, 𝑃)

− 𝑔(𝑈,𝑊)𝑆(𝑉, 𝑃)] 

−=.�p
.�

[𝑔(𝑉,𝑊)𝑔(𝑈, 𝑃) − 𝑔(𝑈,𝑊)𝑔(𝑉, 𝑃)]                                           (3.7) 

 On substituting 𝑈 = 𝑃 = 𝑒�, 1 ≤ 𝑖 ≤ 2𝑛 + 1 in (3.7), where 𝑒� is an 
orthonormal basis for the tangent space at each point of the manifold. Then  

		𝑆(𝑉,𝑊) = 𝛾@𝑔(𝑉,𝑊) + 𝛾=𝜂(𝑉)𝜂(𝑊)                                                      (3.8) 

 where 𝛾@ =
@
.�
[𝑝m − 2𝑟𝑝= − 2𝑛𝑝@] and 𝛾= =

@
.�
[2𝑝=𝑟 − 𝑝m]. 

Also, 𝛾@ + 𝛾= = −2𝑛, keeping in mind this fact we obtain from (3.8) that  

𝑟 = 2𝑛(𝛾@ − 1)                                                                                (3.9) 

In (Dileo & Pastore, 2009), Dileo and Pastore prove that in an almost 
Kenmotsu manifold with 𝜉 belonging to the (𝜅, 𝜇)-nullity distribution the 
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sectional curvature 𝐿(𝑈, 𝜉)=-1. Due to this an almost Kenmotsu manifold with 
𝜉 belonging to the (𝜅, 𝜇)-nullity distribution the scalar curvature 𝑟 = −2𝑛(2𝑛 +
1). With the comfort of this value of 𝑟 get from (3.9) that 𝛾@=-2𝑛 and 𝛾==0. So 
(3.8) reduces to  

𝑆(𝑉,𝑊) = −2𝑛𝑔(𝑉,𝑊)                                                                    (3.10) 

 In outlook of (3.9) and (3.10), Eq.(3.7) take the form  

𝑅(𝑈, 𝑉)𝑊 = −[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉]                                                    (3.11) 

That is, the manifold is locally isometric to the hyperbolic space 
𝐻=>?@(−1). Conversely, if (3.11) holds on 𝑀=>?@. On contacting (3.11) gives 
𝑆(𝑉,𝑊) = −2𝑛𝑔(𝑉,𝑊). Therefore from (2.6) (3.10) and (3.11), we get 
𝐵(𝑈, 𝑉)𝑊 = 0. Thus the theorem is proved.    ∎ 

Corollary 3.3 A B-flat almost Kenmotsu manifold 𝑀=>?@ with ξ belonging 
to the (κ, µ)-nullity distribution is an Einstein manifold provided B-curvature 
tensor is not the concircular curvature tensor.  

In particular, if 		𝑝m = 𝑎, 𝑝@ = 𝑏, 𝑝= =
u@
=>
[ t
>u@

+ 2𝑏] then 𝐵-curvature 

tensor reduces to the quasi-conformal curvature tensor. Hence we can attitude 
the following  

Corollary 3.4 An almost Kenmotsu manifold 𝑀=>?@ along ξ belonging to 
the (𝜅, 𝜇)-nullity distribution is quasi-conformally flat if and only if the manifold 
is locally isometric to the hyperbolic space 𝐻=>?@(−1).  

This result also has been proved by De and Majhi (De & Majhi, 2018).  

Corollary 3.5 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is weyl-conformally flat if and only if the manifold 
is locally isometric to the hyperbolic space 𝐻=>?@(−1).  

 Corollary 3.6 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is conharmonically flat if and only if the manifold 
is locally isometric to the hyperbolic space 𝐻=>?@(−1).  
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Theorem 3.7 An almost Kenmotsu manifold 𝑀=>?@ with ξ belonging to the 
(𝜅, 𝜇)-nullity distribution is 𝜉-𝐵 flat if and only if the manifold is an Einstein 
manifold provided 𝐵-curvature tensor is not the concircular curvature tensor.  

Proof. Let the manifold 𝑀=>?@ is 𝜉-𝐵 flat, that is 𝐵(𝑈, 𝑉)𝜉 = 0. Thus from 
(2.6), we have  

𝑅(𝑈, 𝑉)𝜉 = −.�
.�
[𝑆(𝑉, 𝜉)𝑈 − 𝑆(𝑈, 𝜉)𝑉 + 𝑔(𝑉, 𝜉)𝑄𝑈 − 𝑔(𝑈, 𝜉)𝑄𝑉] −

=.�p
.�

[𝑔(𝑉, 𝜉)𝑈 − 𝑔(𝑈, 𝜉)𝑉]          (3.12) 

Using (3.2), (3.5) and (3.6) in (3.12) and taking inner product with 𝑈, we 
get  

[𝑔(𝑉, 𝑃)𝜂(𝑈) − 𝑔(𝑈, 𝑃)𝜂(𝑉)]

= −
𝑝@
𝑝m
[−2𝑛𝜂(𝑉)𝑔(𝑈, 𝑃) + 2𝑛𝜂(𝑈)𝑔(𝑉, 𝑃) + 𝜂(𝑉)𝑆(𝑈, 𝑃)

− 𝜂(𝑈)𝑆(𝑉, 𝑃)] 

−=.�p
.�

[𝜂(𝑉)𝑔(𝑈, 𝑃) − 𝜂(𝑈)𝑔(𝑉, 𝑃)].                                                  (3.13) 

Putting 𝑈 = 𝜉 in (3.13), it yields  

		𝑆(𝑉, 𝑃) = 𝛾@𝑔(𝑉, 𝑃) + 𝛾=𝜂(𝑉)𝜂(𝑃)                                                    (3.14) 

where 𝛾@ =
@
.�
[𝑝m − 2𝑟𝑝= − 2𝑛𝑝@] and 𝛾= =

@
.�
[2𝑝=𝑟 − 𝑝m]. Also we have 

𝛾@ + 𝛾= = −2𝑛, using this fact we have from (3.14) that  

𝑟 = 2𝑛(𝛾@ − 1).                                                                            (3.15) 

Where as in an almost Kenmotsu manifold with 𝜉 belonging to the (𝜅, 𝜇)-
nullity distribution the scalar curvature 𝑟 = −2𝑛(2𝑛 + 1). With the hand of this 
rate of 𝑟 get from (3.15) that 𝛾@ = −2𝑛 and 𝛾= = 0. So (3.14) reduces to  

𝑆(𝑉, 𝑃) = −2𝑛𝑔(𝑉, 𝑃).                                                                     (3.16) 

That is, the manifold is an Einstein. Its converse statement is obvious.  This 
outright the proves.                                                                                               ∎ 
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Corollary 3.8 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is ξ-quasi-conformally flat if and only if the 
manifold is an Einstein manifold.  

This result also proved by De and Majhi (De & Majhi, 2018).  

Corollary 3.9 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜉-weyl-conformally flat if and only if the 
manifold is an Einstein manifold.  

Corollary 3.10 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜉-conharmonically flat if and only if the 
manifold is an Einstein manifold.  

Theorem 3.11 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜙-𝐵 flat then the manifold is an Einstein 
manifold provided the 𝐵-curvature tensor is not the concircular curvature tensor.  

Proof. Let the manifold 𝑀=>?@ is 𝜙-𝐵 flat, that is, 𝜙=(𝐵(𝜙𝑈,𝜙𝑉)𝜙𝑊) =
0. Then from (2.6) and (3.3) after that pandemic the inner product with 𝑃, we 
have  

0 = 𝑝m[𝑔(𝜙𝑉, 𝜙𝑊)𝑔(𝜙𝑈, 𝑃) − 𝑔(𝜙𝑈,𝜙𝑊)𝑔(𝜙𝑉, 𝑃)] 

+𝑝@[2𝑛𝑔(𝜙𝑉, 𝜙𝑊)𝑔(𝜙𝑈, 𝑃) − 2𝑛𝑔(𝜙𝑈,𝜙𝑊)𝑔(𝜙𝑉, 𝑃) 

+𝑔(𝜙𝑉, 𝜙𝑊)𝑆(𝜙𝑈, 𝑃) + 𝑔(𝜙𝑋, 𝜙𝑊)𝑆(𝜙𝑉, 𝑃)] 

												−2𝑟𝑝=[𝑔(𝜙𝑉, 𝜙𝑊)𝑔(𝜙𝑈, 𝑃) − 𝑔(𝜙𝑈,𝜙)𝑔(𝜙𝑉, 𝑃)]                   (3.17) 

Taking 𝑉 = 𝑊 = 𝑒�, 1 ≤ 𝑖 ≤ 2𝑛 + 1 in (3.17), where 𝑒� is an orthonormal 
basis for the tangent space at each point of the manifold. Then  

𝑆(𝜙𝑈, 𝑃) = �>(.�?=>.�u=p.�)
.�(>?@)

� 𝑔(𝜙𝑈, 𝑃).                                                   (3.18) 

Replacing 𝑃 by 𝜙𝑃 in (3.18) and proving (1.5) and (3.2), we annex  

𝑆(𝑈, 𝑃) = 𝛾@𝑔(𝑈, 𝑃) + 𝛾=𝜂(𝑈)𝜂(𝑃),                                                  (3.19) 

where 𝛾@ =
>(.�?=>.�u=p.�)

.�(>?@)
 and 𝛾= = −>(.�?=.�u=p.�?�>.�)

.�(>?@)
. 



 

 89 

Lectures of Pure Mathematics on Algebra, Analysis and Geometry 

Also we notice that 𝛾@ + 𝛾==-2𝑛, using this evidence we have from (3.19) 
that  

𝑟 = 2𝑛(𝛾@ − 1).                                                                             (3.20) 

As well an almost Kenmotsu manifold with 𝜉 belonging to the (𝜅, 𝜇)-nullity 
distribution the scalar curvature 𝑟 = −2𝑛(2𝑛 + 1). With the hand of this value 
of 𝑟 get from (3.20) that 𝛾@ = −2𝑛 and 𝛾= = 0. So (3.19) reduces to  

		𝑆(𝑈, 𝑃) = −2𝑛𝑔(𝑈, 𝑃)                                                                     (3.21) 

This outright the proves.           ∎ 

Corollary 3.12 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜙-quasi-conformally flat if and only if the 
manifold is an Einstein manifold provided the B-curvature tensor is not the 
concircular curvature tensor.  

Corollary 3.13 An almost Kenmotsu manifold 𝑀=>?@ with ξ belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜙-weyl-conformally flat if and only if the 
manifold is an Einstein manifold provided the B-curvature tensor is not the 
concircular curvature tensor.  

Corollary 3.14 An almost Kenmotsu manifold 𝑀=>?@ with ξ belonging to 
the (𝜅, 𝜇)-nullity distribution is 𝜙-conharmonically flat if and only if the 
manifold is an Einstein manifold provided the B-curvature tensor is not the 
concircular curvature tensor.  

 

4. SEMISYMMETRIC AND RECURRENT PROPERTIES 

Here we consider certain curvature properties, that is, 𝑅 ⋅ 𝐵 = 0, 𝐵 ⋅ 𝜙 = 0 
and 𝐵-𝜙-recurrent on an almost Kenmotsu manifold with 𝜉 belonging to the 
(𝜅, 𝜇)-nullity distribution.  With the hand of the above properties first we prove 
that  

Theorem 4.1 A 𝐵-semisymmetric an almost Kenmotsu manifold 𝑀=>?@ 
with 𝜉 belonging to the (𝜅, 𝜇)-nullity distribution is an Einstein manifold 
provided the B-curvature tensor is not the concircular curvature tensor.  
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Proof. Let the manifold under discussion is 𝐵-semisymmetric, that is 𝑅 ⋅
𝐵 = 0. Thus it ensure that  

0 = 𝑅(𝜉, 𝑃)𝐵(𝑈, 𝑉)𝑊 − 𝐵(𝑅(𝜉, 𝑃)𝑈, 𝑉)𝑊 − 𝐵(𝑈, 𝑅(𝜉, 𝑃)𝑉)𝑊 −
𝐵(𝑈, 𝑉)𝑅(𝜉, 𝑃)𝑊                                                                                       (4.1) 

An exploit of (3.4) in (4.1), we yield  

0 = 𝜂(𝐵(𝑈, 𝑉)𝑊)𝑃 − 𝑔(𝑃, 𝐵(𝑈, 𝑉)𝑊)𝜉 − 𝜂(𝑈)𝐵(𝑃, 𝑉)𝑊
+ 𝑔(𝑃, 𝑈)𝐵(𝜉, 𝑉)𝑊 

−𝜂(𝑉)𝐵(𝑈, 𝑃)𝑊 + 𝑔(𝑃, 𝑉)𝐵(𝑈, 𝜉)𝑊) − 𝜂(𝑊)𝐵(𝑈, 𝑉)𝑃 +
𝑔(𝑃,𝑊)𝐵(𝑈, 𝑉)𝜉.                                                                                       (4.2) 

Using (2.6) and taking the inner product of (4.2) with respect to 𝜉, we have  

0 = 𝑝m𝜂(𝑅(𝑈, 𝑉)𝑊)𝜂(𝑃) + 𝑝@[𝑆(𝑉,𝑊)𝜂(𝑈)𝜂(𝑃) − 𝑆(𝑈,𝑊)𝜂(𝑉)𝜂(𝑃) 

−2𝑛𝑔(𝑉,𝑊)𝜂(𝑈)𝜂(𝑃) + 2𝑛𝑔(𝑈,𝑊)𝜂(𝑉)𝜂(𝑃)] + 2𝑟𝑝=[𝑔(𝑉,𝑊)𝜂(𝑈)𝜂(𝑃) 

−𝑔(𝑈,𝑊)𝜂(𝑉)𝜂(𝑃)] − 𝑔(𝑃, 𝐵(𝑈, 𝑉)𝑊) − 𝜂(𝑈)𝜂(𝐵(𝑃, 𝑉)𝑊)
+ 𝑔(𝑃, 𝑈)𝜂(𝐵(𝜉, 𝑉)𝑊) 

−𝜂(𝑉)𝜂(𝐵(𝑈, 𝑃)𝑊) + 𝑔(𝑃, 𝑉)𝜂(𝐵(𝑈, 𝜉)𝑊) − 𝜂(𝑊)𝜂(𝐵(𝑈, 𝑉)𝑃) +
𝑔(𝑃,𝑊)𝜂(𝐵(𝑈, 𝑉)𝜉)                                                                                   (4.3) 

In the hand of (2.6),(3.2) and (3.5) in (4.3) and then contracting gives  

𝑆(𝑉,𝑊) = 𝛾@𝑔(𝑉,𝑊) + 𝛾=𝜂(𝑉)𝜂(𝑊)                                                   (4.4) 

where 𝛾@ =
p[(=(=>u@).�?@)]
u[.�?(=>u@).�]

 and 𝛾= =
[.�u�>p.�(.�up)u�>�.�]

u[.�?(=>u@).�]
. This 

completes the proof.                                                                                                               ∎ 

Theorem 4.2 A 𝐵-𝜙-semisymmetric an almost Kenmotsu manifold 𝑀=>?@ 
with ξ belonging to the (𝜅, 𝜇)-nullity distribution is an 𝜂-Einstein manifold 
provided the 𝐵-curvature tensor is not the concircular curvature tensor.  

Proof. Let the manifold 𝑀=>?@ is 𝐵-𝜙-semisymmetric, that is 𝐵 ⋅ 𝜙 = 0. 
Then this implies  

𝐵(𝑈, 𝑉)𝜙𝑊 − 𝜙𝐵(𝑈, 𝑉)𝑊 = 0                                                          (4.5) 
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With the hand of (2.6) and (3.3), we have  

𝐵(𝑈, 𝑉)𝜙𝑊 = 𝑝m[𝑔(𝑈, 𝜙𝑊)𝑉 − 𝑔(𝑉, 𝜙𝑊)𝑈] + 𝑝@[𝑆(𝑉, 𝜙𝑊)𝑈
− 𝑆(𝑈, 𝜙𝑊)𝑉 

+𝑔(𝑉, 𝜙𝑊)𝑄𝑈 − 𝑔(𝑈, 𝜙𝑊)𝑄𝑉] + 2𝑝=𝑟[𝑔(𝑉, 𝜙𝑊)𝑈 − 𝑔(𝑈, 𝜙𝑊)𝑉]  
(4.6) 

and  

𝜙𝐵(𝑈, 𝑉)𝑊 = 𝑝m[𝑔(𝑈,𝑊)𝜙𝑉 − 𝑔(𝑉,𝑊)𝜙𝑈] + 𝑝@[𝑆(𝑉,𝑊)𝜙𝑈
− 𝑆(𝑈,𝑊)𝜙𝑉 

+𝑔(𝑉,𝑊)𝜙𝑄𝑈 − 𝑔(𝑈,𝑊)𝜙𝑄𝑉] + 2𝑝=𝑟[𝑔(𝑉,𝑊)𝜙𝑈 − 𝑔(𝑈,𝑊)𝜙𝑉]. (4.7) 

Using (4.6) and (4.7) in (4.5) and after taking the inner product with 𝑃, we 
get  

0 = 𝑝m[𝑔(𝑈, 𝜙𝑊)𝑔(𝑉, 𝑃) − 𝑔(𝑉, 𝜙𝑊)𝑔(𝑈, 𝑃) − 𝑔(𝑈,𝑊)𝑔(𝜙𝑉, 𝑃)
+ 𝑔(𝑉,𝑊)𝑔(𝜙𝑈, 𝑃)] 

+𝑝@[𝑆(𝑉, 𝜙𝑊)𝑔(𝑈, 𝑃) − 𝑆(𝑈, 𝜙𝑊)𝑔(𝑉, 𝑃) + 𝑔(𝑉, 𝜙𝑊)𝑆(𝑈, 𝑃) 

−𝑔(𝑈, 𝜙𝑊)𝑆(𝑉, 𝑃) − 𝑆(𝑉,𝑊)𝑔(𝜙𝑈, 𝑃) + 𝑆(𝑈, 𝑍)𝑔(𝜙𝑉, 𝑃)
− 𝑔(𝑉,𝑊)𝑆(𝜙𝑈, 𝑃) + 𝑔(𝑈,𝑊)𝑆(𝜙𝑉, 𝑃)] 

+2𝑝=𝑟[𝑔(𝑉, 𝜙𝑊)𝑔(𝑈, 𝑃) − 𝑔(𝑈, 𝜙𝑊)𝑔(𝑉, 𝑃) − 𝑔(𝑉,𝑊)𝑔(𝜙𝑈, 𝑃) +
𝑔(𝑈,𝑊)𝑔(𝜙𝑉, 𝑃)].       (4.8) 

Taking 𝑉 = 𝑃 = 𝑒�, 1 ≤ 𝑖 ≤ 2𝑛 + 1 in (4.8), where 𝑒� is an orthonormal 
basis for the tangent space at each point of the manifold. Then  

2𝑝@[𝑆(𝑈, 𝜙𝑊) − 𝑆(𝜙𝑈,𝑊)] + [2𝑛𝑝m − 2(2𝑛 − 1)𝑟𝑝= + (2𝑛 + 1) −
𝑟]𝑔(𝑈, 𝜙𝑊) = 0.                  (4.9) 

Setting 𝑈 by 𝜙𝑈 in (4.9) and using(1.5), (3.5), we obtain  

𝑆(𝑈,𝑊) = 𝛾@𝑔(𝑈,𝑊) + 𝛾=𝜂(𝑈)𝜂(𝑊)                                               (4.10) 

where 𝛾@ = − �
�.�

, 𝛾= =
�u�>.�
�.�

 and 𝛼 = [2𝑛𝑝m − 2𝑟𝑝=(2𝑛 − 1) − 𝑝@(𝑟 −

(2𝑛 + 1))]. Hence the theorem is attest next, we show the following result .   ∎ 
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Theorem 4.3 A 𝐵-𝜙-recurrent an almost Kenmotsu manifold 𝑀=>?@ with 
𝜉 belonging to the (𝜅, 𝜇)-nullity distribution with constant scalar curvature is a 
𝐵-𝜙-symmetric manifold provided 𝐵-curvature tensor is not conharmonic 
curvature tensor.  

Proof. Let 𝑀=>?@ under consideration is a 𝐵-𝜙-recurrent manifold then 
there exists a non-zero 1-form 𝜓 such that  

𝜙=((∇�𝐵)(𝑈, 𝑉)𝑊) = 𝜓(𝑃)𝐵(𝑈, 𝑉)𝑊                                               (4.11) 

for any vector fields 𝑈, 𝑉,𝑊, 𝑃 ∈ 𝑇.(𝑀). If 𝜓(𝑃)=0 then 𝐵-𝜙-recurrent 
manifold reduces to the 𝐵-𝜙-symmetric manifold.  Then in view of (1.4) and 
(4.11), we have  

−(∇�𝐵)(𝑈, 𝑉)𝑊) + 𝜂((∇�𝐵)(𝑈, 𝑉)𝑊)𝜉 = 𝜓(𝑃)𝐵(𝑈, 𝑉)𝑊           (4.12) 

Equation (4.12) can be reduces  

−𝑔((∇�𝐵)(𝑈, 𝑉)𝑊), 𝑄) + 𝜂((∇�𝐵)(𝑈, 𝑉)𝑊)𝜂(𝑄) =
𝜓(𝑃)𝑔(𝐵(𝑈, 𝑉)𝑊,𝑄)              (4.13) 

With the hand of (2.6),(3.2) and (3.5), Eq.(4.13) cut down  

−𝑝m𝑔((∇�𝑅)(𝑈, 𝑉)𝑊,𝑄) − 𝑝@[𝑔((∇�𝑆)(𝑉,𝑊)𝑈, 𝑄) − 𝑔((∇�𝑆)(𝑈,𝑊)𝑉, 𝑄) 

+𝑔(𝑉,𝑊)(∇�𝑆)(𝑈, 𝑄) − 𝑔(𝑈,𝑊)(∇�𝑆)(𝑉, 𝑄)] − 2𝑝=𝑑𝑟(𝑃)[𝑔(𝑉,𝑊)𝑔(𝑈, 𝑄)
− 𝑔(𝑈,𝑊)𝑔(𝑉, 𝑄)] 

+𝜂(𝑄)𝑝m𝑔((∇�𝑅)(𝑈, 𝑉)𝑊, 𝜉) + 𝑝@[𝑔((∇�𝑆)(𝑉,𝑊)𝑈, 𝜉) 

−𝑔((∇�𝑆)(𝑈,𝑊)𝑉, 𝜉) + 𝑔(𝑉,𝑊)(∇�𝑆)(𝑈, 𝜉) − 𝑔(𝑈,𝑊)(∇�𝑆)(𝑉, 𝜉)] 

+2𝑝=𝑑𝑟(𝑃)[𝑔(𝑉,𝑊)𝑔(𝑈, 𝜉) − 𝑔(𝑈,𝑊)𝑔(𝑉, 𝜉)] 

= 𝜓(𝑃)𝑝m𝑔(𝑅(𝑈, 𝑉)𝑊,𝑄) + 𝑝@[𝑆(𝑉,𝑊)𝑔(𝑈, 𝑄) − 𝑆(𝑈,𝑊)𝑔(𝑉, 𝑄) 

+𝑔(𝑉,𝑊)𝑆(𝑈, 𝑄) − 𝑔(𝑈,𝑊)𝑆(𝑉, 𝑄)] + 2𝑝=𝑟[𝑔(𝑉,𝑊)𝑔(𝑈, 𝑄) −
𝑔(𝑈,𝑊)𝑔(𝑉, 𝑄)].               (4.14) 

Contracting (4.14) and after simplification we get  

2(𝑝m − 𝑝@)(∇�𝑆)(𝑉,𝑊) + 4𝑛𝑝=𝑑𝑟(𝑃)𝑔(𝑉,𝑊) 
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+𝜂(𝑊)𝑔(𝑉, 𝑄) − 𝜂(𝑉)𝜂(𝑊)𝜂(𝑊) + 2𝑝=𝑑𝑟(𝑃)[𝜂(𝑈)𝑔(𝑉,𝑊)
− 𝜂(𝑉)𝑔(𝑈,𝑊)] 

= 𝜓(𝑃)[(𝑝m − 3𝑝@ − 2𝑛𝑝@)𝑆(𝑉,𝑊) + (𝑝@ + 4𝑛𝑝=)𝑟𝑔(𝑉,𝑊)].          (4.15) 

Substituting 𝑉 = 𝑊 = 𝜉 in (4.15), we have  

𝜓(𝑃) = �>(=>?@).��p(�)
[u=>(.�u(=>?�)).�?(=>?@)p(.�?�>.�)]

 .                                             (4.16) 

If the manifold under consideration is of constant curvature, then 𝑑𝑟(𝑄) =
0. Consequently, we get 𝜓(𝑃) = 0. Therefore from (4.11), we get 
𝜙=�(∇�𝐵)(𝑈, 𝑉)𝑊� = 0, that is manifold reduces to 𝐵-𝜙-symmetric manifold. 
Hence the theorem is justify.      .                                                                                                 ∎ 

Corollary 4.4 A conharmonically 𝜙-recurrent an almost Kenmotsu 
manifold 𝑀=>?@ with 𝜉 belonging to the (𝜅, 𝜇)-nullity distribution is always 𝜙-
symmetric manifold.  

 

5. CURVATURE CONDITIONS 𝑩 ⋅ 𝑹 = 𝟎, 𝑩 ⋅ 𝑩 = 𝟎 AND 

𝑩 ⋅ 𝑺 = 𝟎 

Next, we suppose that the manifold satisfying some condition, that is, 𝐵 ⋅
𝑅 = 0, 𝐵 ⋅ 𝐵 = 0 and 𝐵 ⋅ 𝑆 = 0, where 𝐵, 𝑅 and 𝑆 are the 𝐵-curvature tensor, 
the Riemannian curvature tensor and the Ricci tensor respectively. Now, in this 
position we show the theorem.  

Theorem 5.1 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to the 
(𝜅, 𝜇)-nullity distribution the condition 𝐵 ⋅ 𝑅 = 0, then the manifold is an 
Einstein manifold provided the 𝐵-curvature tensor is not the concircular 
curvature tensor.  

 Proof. We consider 𝑀=>?@ satisfies the condition 𝐵 ⋅ 𝑅 = 0. Then  

0 = 𝐵(𝜉, 𝑃)𝑅(𝑈, 𝑉)𝑊 − 𝑅(𝐵(𝜉, 𝑃)𝑈, 𝑉)𝑊 − 𝑅(𝑈, 𝐵(𝜉, 𝑃)𝑉)𝑊 −
𝑅(𝑈, 𝑉)𝐵(𝜉, 𝑃)                                                                                              (5.1) 
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In view of (2.6), (3.2) and (3.5), equation (5.1) can be reduces on taking 
𝑊 = 𝜉  

𝑝@[𝑆(𝑉, 𝑃)𝑈 − 4𝑛𝑔(𝑈, 𝑃)𝑉] − 4𝑟𝑝=[𝑔(𝑈, 𝑃)𝑉 + 𝜂(𝑈)𝜂(𝑃)𝑉] = 0.    (5.2) 

Now taking the inner product of (5.2) with 𝑄, we obtain  

0 = 𝑝@[𝑆(𝑉, 𝑃)𝑔(𝑈, 𝑄) − 4𝑛𝑆(𝑈, 𝑃)𝑔(𝑉, 𝑄)] − 4𝑟𝑝=[𝑔(𝑈, 𝑃)𝑔(𝑉, 𝑄) +
𝜂(𝑈)𝜂(𝑃)𝑔(𝑉, 𝑄)].   (5.3) 

Taking 𝑈 = 𝑃 = 𝑒�, 1 ≤ 𝑖 ≤ 2𝑛 + 1 in (5.3), where 𝑒� is an orthonormal 
basis for the tangent space at each point of the manifold, we have  

𝑆(𝑉, 𝑄) = 4𝑟 �𝑛 + =.�
.�
(𝑛 + 1)�𝑔(𝑉, 𝑄).                                               (5.4) 

This achieve the proof. .                                                                                                      ∎ 

Theorem 5.2 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to the 
(𝜅, 𝜇)-nullity distribution satisfying the condition 𝐵 ⋅ 𝐵 = 0, then the manifold 
is provided the 𝐵-curvature tensor is not the concircular curvature tensor.  

Proof. Let 𝑀=>?@ satisfying the condition 𝐵 ⋅ 𝐵 = 0, which implies  

0 = 𝐵(𝜉, 𝑃)𝐵(𝑈, 𝑉)𝜉 − 𝐵(𝐵(𝜉, 𝑃)𝑈, 𝑉)𝜉 − 𝐵(𝑈, 𝐵(𝜉, 𝑃)𝑉)𝜉 −
𝐵(𝑈, 𝑉)𝐵(𝜉, 𝑃)𝜉.                      (5.5) 

Applying (2.6), (3.2), (3.5) in (5.5) and then taking the inner product with 𝜉 
and at 𝑈 = 𝜉, we obtain  

(𝑝m + 2𝑛𝑝@ − 2𝑟𝑝=)[𝑄q𝑃 − 𝛾@𝑃 − 𝛾=𝜂(𝑃)𝜉] = 0                                          (5.6) 

which implies that either 𝑝m = 2(𝑟𝑝= − 𝑛𝑝@) or 𝑄q𝑃 = 𝛾@𝑃 + 𝛾=𝜂(𝑃)𝜉, 

where 𝛾@ =
@
.�
[2𝑛𝑝@ + 4𝑝=(𝑟 + 1)], 𝛾= = − @

.�
[𝑝m + 6𝑛𝑝@ + 2𝑟𝑝=] .              ∎ 

Finally, we show that  

Theorem 5.3 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to the 
(𝜅, 𝜇)-nullity distribution the curvature condition 𝐵 ⋅ 𝑆 = 0, if and only if the 
manifold is an Einstein manifold.  
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Proof. Let the condition 𝐵 ⋅ 𝑆 = 0 holds on 𝑀=>?@ which implies that 
(𝐵(𝑈, 𝑉) ⋅ 𝑆)(𝑊, 𝑃) = 0, for all vector fields 𝑈, 𝑉,𝑊, 𝑃. Then we have  

		𝑆(𝐵(𝑈, 𝑉)𝑊, 𝑃) + 𝑆(𝑊,𝐵(𝑈, 𝑉)𝑃) = 0                                                 (5.7) 

for any vector fields 𝑈, 𝑉,𝑊, 𝑃 on 𝑀=>?@. Substituting 𝑈=𝑊=𝜉 in (5.7) we 
have  

		𝑆(𝐵(𝜉, 𝑉)𝜉, 𝑃) + 𝑆(𝜉, 𝐵(𝜉, 𝑉)𝑃) = 0                                                    (5.8) 

By the use of (2.6), (3.4), (3.5) and (3.6) we get from (5.8) that 

		𝑆(𝑉, 𝑃) = 𝛾@𝑔(𝑉, 𝑃)                                                                          (5.9) 

where 𝛾@ =
�>p.�u�>�.�u=>.�
.�?=(>.�up.�)

. Thus the manifold is an Einstein manifold. 

Conversely, if the manifold under consideration is an Einstein manifold, then 
from (5.7) it follows that 𝐵 ⋅ 𝑆 = 0 holds identically. This execute the proof of 
the theorem.                                                                                                                                        ∎ 

 

6. 𝝃 LINKED WITH (𝜿, 𝝁)′-NULLITY DISTRIBUTION 

This section is related to if 𝑈 ∈ �̀� be the eigen vector of ℎ′ corresponding 
to the eigen value 𝜆. Then from (2.5) it is light that 𝜆= = −(𝑘 + 1), a constant. 
Hence 𝑘 ≤ 1 and 𝜆 = ±√−𝑘 + 1. We indicate the eigen spaces associated with 
ℎ′ by [𝜆]′ and [−𝜆]′ corresponding to the non-zero eigen values [𝜆] and [−𝜆] of 
ℎ′ respectively. Thus we recall some results.  

Lemma 6.1 (Wang & Lui, 2015). Let (𝑀=>?@, 𝜙, 𝜉, 𝜂, 𝑔) be an almost 
Kenmotsu manifold with 𝜉 belonging to the (𝜅, 𝜇)′-nullity distribution. If h′ ≠
0, then the Ricci operator 𝑄q  of 𝑀=>?@ is given by  

𝑄q = −2𝑛𝑖𝑑 + 2𝑛(𝑘 + 1)𝜂 ⊗ 𝜉 − 2𝑛ℎ′                                                (6.1) 

In addition, the scalar curvature of 𝑀=>?@ is 2𝑛(𝑘 − 2𝑛). 

Also in an almost Kenmotsu manifold with 𝜉 belonging to the (𝜅, 𝜇)′-nullity 
distribution, we carry  
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𝑅(𝑈, 𝑉)𝜉 = 𝑘[𝜂(𝑉)𝑈 − 𝜂(𝑈)𝑉] + 𝜇[𝜂(𝑉)ℎ′𝑈 − 𝜂(𝑈)ℎ′𝑉]                  (6.2) 

𝑅(𝜉, 𝑈)𝑉 = 𝑘[𝑔(𝑈, 𝑉)𝜉 − 𝜂(𝑉)𝑈] + 𝜇[𝑔(ℎ′𝑈, 𝑉)𝜉 − 𝜂(𝑉)ℎ′𝑈]            (6.3) 

𝑆(𝑉, 𝜉) = 2𝑛𝑘𝜂(𝑉).                                                                                  (6.4) 

Now we show the following result.  

Theorem 6.2 A (2n + 1)-dimensional (𝑛 > 1) B-flat almost Kenmotsu 
manifold with 𝜉 belonging to the (𝜅, 𝜇)′-nullity distribution is either 
conharmonically flat or of a quasi-constant curvature.  

Proof. 𝑅q(𝑈, 𝑉,𝑊, 𝑃) = −.�
.�
[𝑆(𝑉,𝑊)𝑔(𝑈, 𝑃) − 𝑆(𝑈,𝑊)𝑔(𝑉, 𝑃) +

𝑔(𝑉,𝑊)𝑆(𝑈, 𝑃) − 𝑔(𝑈,𝑊)𝑆(𝑉, 𝑃)] 

−=.�p
.�

[𝑔(𝑉,𝑊)𝑔(𝑈, 𝑃) − 𝑔(𝑈,𝑊)𝑔(𝑉, 𝑃)].                                             (6.5) 

Taking 𝑉 = 𝑊 = 𝜉 in (6.5), using (6.2) and (6.4) we get after simplifying  

𝑆(𝑈, 𝑃) = 𝛾@𝑔(𝑈, 𝑃) + 𝛾=𝜂(𝑈)𝜂(𝑉) −
.�§
.�
𝑔(ℎ′𝑈, 𝑃)                               (6.6) 

where 𝛾@ = −[.�¨
.�
+ =p.�

.�
+ 2𝑛𝑘], and 𝛾= = [.�¨

.�
+ =p.�

.�
+ 4𝑛𝑘]. It is 

noticed that  

𝛾@ + 𝛾= = 2𝑛𝑘                                                                                    (6.7) 

With the hand of (6.6) and (6.7), we obtain  

𝛾@ =
p
=>
− 𝑘                                                                                       (6.8) 

This complete the prove.                                                                      ∎ 

 

7. EXTENDED 𝑩-CURVATURE TENSOR OF AN ALMOST 
KENMOTSU MANIFOLD WİTH (𝜿, 𝝁)- NULLITY 
DISTRIBUTION 

This section concern with the light of vanishing extended 𝐵-curvature tensor 
and extended 𝜉-𝐵-flat almost Kenmotsu manifolds with 𝜉 belonging to the 
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(𝜅, 𝜇)-nullity distribution. The extended form of generalized 𝐵-curvature tensor 
can be designate as  

𝐵©(𝑈, 𝑉)𝑊 = 𝑝m𝑅(𝑈, 𝑉)𝑊 + 𝑝@[𝑆(𝑉,𝑊)𝑈 − 𝑆(𝑈,𝑊)𝑉 + 𝑔(𝑉,𝑊)𝑄𝑈
− 𝑔(𝑈,𝑊)𝑄𝑉] 

+2𝑝=𝑟[𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉] − 𝜂(𝑈)𝐵(𝜉, 𝑉)𝑊 − 𝜂(𝑉)𝐵(𝑈, 𝜉)𝑊 −
𝜂(𝑊)𝐵(𝑈, 𝑉)𝜉                               (7.1) 

Now we came to the following result.  

Theorem 7.1 In an almost Kenmotsu manifold 𝑀=>?@ with ξ belonging to 
the (𝜅, 𝜇)-nullity distribution, if the extended 𝐵-curvature tensor vanishes then 
the manifold is 𝜂-Einstein provide the 𝐵-curvature tensor is not the concircular 
curvature tensor.  

Proof. Let 𝐵©(𝑈, 𝑉)𝑊 = 0 holds on 𝑀=>?@. So adopting 𝑉 = 𝑊 = 𝜉, we 
get from (7.1) that  

𝑅(𝑈, 𝜉)𝜉 = −
𝑝@
𝑝m
[𝑆(𝜉, 𝜉)𝑈 − 𝑆(𝑈, 𝜉)𝜉 + 𝑔(𝜉, 𝜉)𝑄𝑈 − 𝑔(𝑈, 𝜉)𝑄𝜉] 

−=p.�
.�

[𝑔(𝜉, 𝜉)𝑈 − 𝑔(𝑈, 𝜉)𝜉] + @
.�
[𝜂(𝑈)𝐵(𝜉, 𝜉)𝜉 + 𝜂(𝜉)𝐵(𝑈, 𝜉)𝜉 +

𝜂(𝜉)𝐵(𝑈, 𝜉)𝜉]              (7.2) 

Now, making the use of (3.2), (3.5) and (3.6) the equation (7.2) reflect as  

2𝐵(𝑈, 𝜉)𝜉 = −[𝑝m + 2𝑛𝑝@ − 2𝑟𝑝=]𝑈 + [𝑝m + 4𝑛𝑝@ − 2𝑟𝑝=]𝜂(𝑈)𝜉 +
𝑝@𝑄𝑈                           (7.3) 

On the other-hand in view of (2.6),(3.2),(3.5) and (3.6) we obtain  

(𝑈, 𝜉)𝜉 = −[𝑝= + 2𝑛𝑝@ − 2𝑟𝑝=]𝑈 + [𝑝m + 4𝑛𝑝@ − 2𝑟𝑝=]𝜂(𝑈)𝜉 + 𝑝@𝑄𝑈.   (7.4) 

With the help of (7.3) and (7.4), we get  

		𝑄q𝑈 = 𝛾@𝑈 + 𝛾=𝜂(𝑈)𝜉                                                                   (7.5) 

where 𝛾@ =
@
.�
[2𝑛𝑝@ + 2𝑝=(𝑟 + 1)], and 𝛾= = − @

.�
[𝑝m + 4𝑛𝑝@ + 2𝑟𝑝=]. 

This shows that the manifold is 𝜂-Einstein. Hence the theorem is proved.        ∎ 
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At last we show the subsequent result. 

Theorem 7.2 An almost Kenmotsu manifold 𝑀=>?@ with 𝜉 belonging to the 
(𝜅, 𝜇)-nullity distribution is extended 𝜉-𝐵 flat then the manifold is 𝜂-Einstein 
provide the 𝐵-curvature tensor is not the concircular curvature tensor.  

Proof. Let the condition 𝐵©(𝑋, 𝑌)𝜉 = 0 holds on 𝑀=>?@. So from (7.1), we 
have  

𝑅(𝑈, 𝑉)𝜉 = −
𝑝@
𝑝m
[𝑆(𝑉, 𝜉)𝑈 − 𝑆(𝑈, 𝜉)𝑉 + 𝑔(𝑉, 𝜉)𝑄𝑈 − 𝑔(𝑈, 𝜉)𝑄𝑉]

−
2𝑟𝑝=
𝑝m

[𝑔(𝑉, 𝜉)𝑈 − 𝑔(𝑈, 𝜉)𝑉] 

+ @
.�
[𝜂(𝑈)𝐵(𝜉, 𝑉)𝜉 + 𝜂(𝑉)𝐵(𝑈, 𝜉)𝜉 + 𝜂(𝜉)𝐵(𝑈, 𝑉)𝜉].                               (7.6) 

Taking 𝑉 = 𝜉 in (7.6) and using (3.2),(3.5) and (3.6) then (7.6) reduces to  

2𝐵(𝑈, 𝜉)𝜉 = [−𝑝m − 2𝑛𝑝@ + 2𝑟𝑝=]𝑈 + [𝑝m + 4𝑛𝑝@ − 2𝑟𝑝=]𝜂(𝑈)𝜉 +
𝑝@𝑄𝑈.                        (7.7) 

On the other-hand in view of (2.6),(3.2),(3.5) and (3.6) we obtain  

𝐵(𝑈, 𝜉)𝜉 = −[𝑝= + 2𝑛𝑝@ − 2𝑟𝑝=]𝑈 + [𝑝m + 4𝑛𝑝@ − 2𝑟𝑝=]𝜂(𝑈)𝜉 + 𝑝@𝑄𝑈. (7.8) 

With the help of (7.7) and (7.8), we get  

𝑄q𝑈 = 𝛾@𝑈 + 𝛾=𝜂(𝑈)𝜉                                                                           (7.9) 

where 𝛾@ =
@
.�
[2𝑛𝑝@ + 2𝑝=(𝑟 + 1)], and 𝛾= = − @

.�
[𝑝m + 4𝑛𝑝@ +

2𝑟𝑝=].This implies that the manifold is an 𝜂-Einstein. Hence the theorem is 
established.                                                                                                               ∎ 

 

8. CONCLUSION 

In 2014, Shaikh and Kundu (Shaikh & Kundu, 2014) to imported and 
studied a type of tensor field, called generalized 𝐵 curvature tensor on a 
Riemannian manifold. It counts the structures of quasi-conformal, Weyl-
conformal, conharmonic and concircular curvature tensors. In this consequences 
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we study certain courvature condition on such curvature on almost Kenmotsu 
manifolds with its characteristic vector field 𝜉 belongs to the (𝑘, 𝜇)-nullity and 
(𝑘, 𝜇)H-nullity distribution respectively. The object of the paper is to study 
almost Kenmotsu manifolds with its characteristic vector field 𝜉 belongs to the 
(𝑘, 𝜇)-nullity and (𝑘, 𝜇)H-nullity distribution respectively. Also we deal with 
conditions 𝐵. 𝑅, 𝐵. 𝐵 and 𝐵. 𝑆 in an almost Kenmotsu manifold. As a 
consequence of the main results we obtain some corollaries. 
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